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5.   Plant Dynamic Models
This chapter provides time domain dynamical expressions in nonlinear and linear forms useful for control implementation and for use in the experiments described later in this manual.  An overview of the principles of magnetism and magnetic levitation is given in Appendix A.  The appendix gives the motivation for and form of the magnetic force terms used in this chapter.
5.1
Full Order Nonlinear Model
A free body diagram of two suspended magnets in the Model 730 apparatus is shown in Figure 5.1-1.  Either magnet is acted on by forces from either drive coil, from the other magnet, from gravity, and from friction (modeled as viscous).
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Figure 5.1-1.  Free Body Diagram & Dynamic Configuration
From Figure 5.1-1, we have for the first magnet
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(5.1-1)

Similarly for the second magnet
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(5.1-2)

The magnetic force terms are modeled as having the following forms (see Appendix A for details)
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(5.1-3)
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(5.1-4)
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(5.1-5)
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(5.1-6)
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(5.1-7)

where


y12 = yc + y2 - y1
(5.1-8)

and a, b, c, d , and N are constants which may be determined by numerical modeling of the magnetic configuration or by empirical methods.  Typically 3<N<4.5.  
5.2
Simplified Equations of Motion

The cross magnet/actuator forces, Fu12 and Fu21 are generally small compared to Fu11 and Fu22 for typical values of coil current and for the magnets in their normal operating range.   For the Model 730 apparatus, the friction forces are also typically small.  In addition, a value of four for the power of the denominator terms in Eq’s (5.1-3 through -7) has been shown empirically to yield a close approximation of the force/distance relationships – see Figure 5.2-1
.  The following simplified model is therefore valid for many control design and analysis purposes.
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(5.2-1)
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(5.2-2)

where
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(5.2-3)
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(5.2-4)
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(5.2-5)
The coil current, ii, has been replaced with the more general term of control effort denoted as ui.  The control effort may be a digital word, voltage, or current and is presumed to be linearly proportional to the coil current.  The coefficient a must of course be consistently scaled with the units of ui.  The above equations may be modified to describe the SISO and SIMO systems by obvious deletion of the appropriate terms.
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a) Actuator #1 Characteristic
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b) Magnet-to-magnet Characteristic

Figure 5.2-1.  Fourth Order Fit for Actuator and Magnet-to-magnet Force Terms

5.4
Linearized Equations of Motion
For small motions, the system may be modeled as being linear.  The linearized equations of motion are found by the customary method of solving for the zeroeth and first order terms of the Taylor’s Series expansion of the respective equations about the operating point.   Calling the expression of Eq. (5.2-1) , for example, the linearized equation of motion is found by calculating 
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(5.3-1)

Where y1o, y2 o, and u1o are the respective magnet positions and control effort that define the operating point.  For the purposes of control design, we shall choose the operating point to be at an equilibrium so that 
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(5.3-2)
Evaluating Eq. (5.3-1) and using Eq. (5.3-2) we have
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(5.3-3)
which may be rewritten as:
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(5.3-4)
Similarly for Eq. (5.2-2) 
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(5.3-5)
where
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(5.3-6)
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(5.3-7)
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(5.3-8)
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(5.3-9)

[image: image35.wmf]
(5.3-10)
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(5.3-11)
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(5.3-12)
From Eq.(5.3-2) we may solve for the equilibrium control effort values
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(5.3-13)
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(5.3-14)
Thus for small motions, the salient dynamics are identical in form to those of the linear discrete system shown in Figure 5.3-1.  Note in the figure that k2’ is a “negative spring” – i.e. it generally has negative values – and that the magnets in this case are configured so that they repel each other.  If they are set to attract each other, k12’ becomes negative.
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Figure 5.3-1.  Equivalent Simplified/Linearized Plant
Again, the Model 730 apparatus is easily configured for SISO, MISO, and SIMO operation by removing one magnet and/or exciting only one coil.  The linearized models for such systems may be found by neglecting the appropriate terms in Eq’s (5.3-4, -5).  A state space realization of this system is



:
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(5.3-15)
where
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and Ci = 1 (i=1,2,3,4) when Xi is an output and equals 0 otherwise.

5.4
Sensor Model & Linearized System Using Raw Sensor Data
The sensor output characteristic as described in Section 4.5, is nonlinear.  The following equation is motivated by examining the optical design and geometry of the laser / detector / magnet system.  
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(5.4-1)
where yical is the linearized/calibrated output of the sensor, and yiraw is the raw sensor output.
 The coefficients, e, f, g, and h are found by calibrating the sensor according to the instructions of Section 6.1.  A default set of coefficients that provide nominal measurement accuracy is furnished with each unit.  A depiction of typical sensor data fitted with a curve of the form of Eq.(5.4-1) is shown in Figure 5.4-1 (The discrete data points correspond to physical yi positions of the magnet; the continuous curve is yical.).  Note that the sensor#2 plot has negative values of y2 and y2cal.  
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a) Sensor #1 (lower)
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b) Sensor #2 (upper)

Figure 5.4-1.  Nonlinear Sensor Input/Output Characteristic
For certain control approaches, the raw sensor output may be used as the feedback signal.  In general, the control designer will linearize the sensor output in such a case.  Assuming yical is a sufficiently accurate approximation of yi, the linearized form of such a system is found by replacing yi with yical in Eq. (5.3-4) and using the chain rule of differentiation where the derivative is taken with respect to yiraw, i.e.
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(5.4-2)
The resulting equations of motion are:
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(5.4-3)
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(5.4-4)
where
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(5.4-5)
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 and yirawo is the raw sensor output corresponding to yio (≈ yicalo ). Note that the gain slope of y1raw has reversed polarity from that of y1cal (e.g. as the magnet #1 position increases, yiraw decreases).  Thus ky1 is always negative.


















6. Experiments
This chapter outlines experiments which identify the plant characteristics and parameters, implement a variety of control schemes, and demonstrate many important control principles.  The versatility of the software / hardware system allows for a much broader range of experimental uses than will be described here and the user is encouraged to explore whatever topics and methodologies may be of interest.  The safety portion of this manual, Section 2.3, must be read and understood by any user prior to operating this equipment.

The instructions in this chapter begin at a high level of detail so that they may be followed without a great deal of familiarity with the apparatus and the Executive program’s system interface and become more abbreviated in details of system operation as the chapter progresses.  To become more familiar with these operations, it is strongly recommended that the user read Chapter 2 in its entirety prior to undertaking the operations described here.  Remember here, as always, it is recommended that the user save data and control configuration files regularly to avoid undue work loss should a system fault occur.  The graphical description of the MagLev apparatus, Figure 6.1-1, should be referred to in following the instructions of this section.
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Figure 6.1-1.  MagLev Apparatus
6.1
System Identification

This section gives a procedure for identifying the plant parameters and nonlinear characteristics given in Chapter 5. The approach will be to measure the specific input/output characteristics of the laser sensor and magnet/coil actuators and the magnet/magnet interactions as they vary with relative position.  The laser position nonlinearity results from the nature of the change of light intensity on the detector with magnet position and is associated with the particular sensor used.  The strong magnetic field nonlinearities, however, are inherent in this class of magnetic systems.
6.1.1  Sensor Characteristic

Procedure 
1.
Setup the mechanism with one magnet only resting on the lower drive coil (See Section 2.2 regarding installing the magnets and cleaning the white diffuse reflective surfaces if necessary).  Make certain that your hands are clean at all times when touching the magnet - avoid touching the white surface.  Power to the Control Box should be off.  Construct tables similar to of Table 6.1-1, -2 to record data.

2.
Enter the Setup Sensor Calibration box via the Setup menu, and verify that Use Raw Sensor Counts and Apply Thermal Compensation are selected.  Select OK to exit to the background screen.  Select Abort Control to make sure that no real-time controller is active.  Turn on power to the Control Box.  You should see the laser light beam on the upper and lower magnet surfaces. Move the magnet manually up and down to verify that the sensor counts displayed on the Background Screen are changing.
3.
Sight along the top of the magnet and adjust the ruler height so that the 0 cm. position precisely matches the plane of the top of the magnet.  

4.
Record the raw sensor output at the 0 cm. position as read from the Sensor 1 display on the Background Screen. Refer to the notes below regarding moving the magnet to the desired calibration positions and reading the sensor counts.  Manually move the magnet to the 0.50 cm position and read and record the raw sensor output.  Continue moving and recording the sensor data according for the magnet positions in Table 6.1-1.

5.
Repeat Steps 1 through 3 for the upper sensor.  Here you will need to sight off the bottom surface of the magnet.  In this case “Magnet Position” is the distance below its uppermost travel.  Note that by convention, the displacements of the upper magnet are negative-going as the magnet moves downward.

Notes on taking sensor calibration data:

1)
Hold the magnet only by the edges and do not block the laser light.

2)
Apply light finger pressure radially inward so that the magnet bushing is snug against one side of the glass rod.  This will assure that the magnet is not cocked relative to the rod and is approximately horizontal.  It should also assure that the magnet does not move during the measurement.  Any movement can lead to inaccurate results.  Further enhancement in the accuracy of results of this and the next section may be obtained by taping a ruler (cm./mm. graduations) along side of the upper and lower sensor/coil support arms with the ruled edge very close to the magnet travel zone.  In this way the magnet height may be more reliably read.

3)
When the magnet is at the close end of travel relative to the sensor (at the bottom for sensor #1, at the top for sensor #2) you should rotate it and find the clocking position where the sensor output is approximately the average of the highest and lowest values.  There may be as much as ±1000 counts difference between the highest and lowest values (if there is more than this you should clean the white surface per the instructions of Section 2.2.2).  This amounts to an equivalent position measurement error of less than 1 mm and becomes much less for positions further away from the coil.  You should try to maintain this approximate clocking for the remainder of the magnet positions at which you take sensor data in Step 4 (e.g. keep the magnet polarity “N” label pointed in the same direction).  
There will be some noise in the sensor reading; you should “visually average” the values displayed.  You need only read the sensor to three significant digits for the purposes here. 

Table 6.1-1.   Sensor Calibration / Linearization Data

Magnet Position For Sensor #1 (cm)
Y1raw   (Sensor 1, counts)
Magnet Position For Sensor #2 (cm)
Y2raw (Sensor 2, counts)

0.00

0.00


0.50

-0.50


1.00

-1.00


2.00

-2.00


3.00

-3.00


4.00

-4.00


5.00

-5.00


6.00

-6.00


6.1.2  Actuator Characteristic

The mechanism should be in the same configuration as in the last section.  Assure that the north pole of the magnet is facing upward.  The ruler should again be adjusted to measure off the upper surface of the magnet when it is resting in its lowermost position.

Procedure 
1.
Write a simple real-time algorithm to activate actuator coil #1 (i.e. put control effort values on the DAC) with a constant control effort of 5000 counts.
  Review the algorithm with your instructor or laboratory supervisor before proceeding to the next step.

2.
Implement this algorithm using the following steps: 

a)
Enter Setup Control Algorithm via the Setup menu and select Edit Algorithm.  You are now in the control algorithm editor.  If the editor contains any text select New under File.

b)
Type in your algorithm.  Select Save As… and choose an appropriate name and directory to save this algorithm in.  Close the editor by either selecting Save Changes and Quit or simply clicking on the upper right hand button.

c)
Stay well clear of the apparatus when initially performing the next step.  Select Implement Algorithm to begin immediate execution of your algorithm.  You should see the lower magnet levitate roughly 1 cm.

3.
Record the height of the magnet corresponding to 5000 counts in a table similar to Table 6.1-2.  You may wish to spin the magnet (again touching only its edge) to reduce the effects of friction so that the true equilibrium height is observed.

4.
Re-enter the algorithm editor via Edit Algorithm, reduce the control effort to 4000 counts, select Save Changes and Quit , and Implement Algorithm.  You should notice the magnet height become lower.  Record the magnet height.

5.
Repeat step 4 to find the control effort value at which the magnet is lifted only a very slight amount above the support pads (i.e. the 0+ position).  Again, you may wish to spin the magnet to reduce the effects of friction. 

6.
Repeat step 4 for the remaining control effort values of Table 6.1-2.  Select Abort Control immediately after measuring magnet height to minimize heat build-up in the coil and servo amplifiers during exposure to the higher control effort values (those greater than 10,000 counts)  Do not exceed 22,000 counts of control effort.

Table 6.1-2.   Actuator Calibration / Linearization Data

Magnet Position (cm)
u1raw   (Uncompensated Control Effort, counts)

0.00



4000


5000


6000


8000


10000


12000


14000


18000


22000

6.1.3  Magnet-to-magnet Force Characteristic

The interaction of the two magnets has a nonlinear force characteristic.  When two magnets are used in the MagLev apparatus, they are typically stacked with like poles facing each other so that they repel.  When the lower magnet is stationary, the upper magnet comes to rest in equilibrium between the upward repulsive magnet force and downward gravitational force.  The magnetic force characteristic may be measured by adding and subtracting weight from the upper magnet and measuring the equilibrium height.  The measurement technique is similar to that of the previous section. For Model 730 this characteristic does not vary appreciably from system to system.  Results of a typical test are shown in Table 6.1-3.  
The student is not required to repeat these measurements.  The student may however wish to install the second magnet and witness the remarkably strong magnet-to-magnet repulsion of these rare-earth magnets and the effective spring (nonlinear) that is created with the force of gravity acting downward and the repulsive magnetic force acting upward.  Be careful when handling the magnets in this process.  The procedures of Section 2.2.2 must be followed closely to avoid damaging the magnets.











Table 6.1-3.   Magnet-to-magnet Force Interaction Data

Weight at Magnet #2 (fm12, N)
Magnet #2 Position Relative to  Magnet #1 At Equilibrium (y12, cm)

0.402
11.73

0.612
10.30

0.735
9.57

0.998
8.80

1.190
8.09

2.171
6.72

3.152
5.90

4.133
4.78

6.095
4.25

11.00
2.74

6.1.4  Mass of Magnet

The final salient properties of the magnet in the MagLev apparatus and its dynamic environment are its inertia (or mass) and the associated force (weight) due to the earth’s gravitational field.   

Procedure 

1.
Determine the mass and weight of the magnet (including the bronze bushing).  You may use the “free” magnet stowed at the magnet storage post and assume both magnets to be equal.  Mass should be measured to the nearest gram.
Questions / Exercises:
A.
Plot the sensor #1 output (y1raw) as a function of magnet height.  Plot the inverse of this function (magnet height as a function of y1raw).  Use curve fitting techniques to find a set of coefficients {e*, f*, g*, h*}
 in Eq.(6.1-1) that yields values of y*1cal that closely match your data (within 1 mm for the 0 and 0.5 cm position and within 0.5 mm for all other points) at the locations measured in Table 6.1-1.  Using these coefficients, plot y*1cal (y1raw) on the same plot as the test data to show the closeness of the match.  Repeat this procedure for the Sensor #2 output.
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(6.1-1)

Scale the coefficients such that the new set {e, f, g, h} result in values of y1cal having units 10,00 times smaller. I.e. the new calibration is 
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(6.1-2)


with y1cal having resolution of 10,000 counts per cm. This finer resolution will be used to reduce computational quantization effects during subsequent digital processing.  Find the same scaling for sensor #2.
B.
The experiments in Section 6.1.2 found the equilibrium height of the magnet for a given control effort (in controller counts or, proportionally, current in the coil).  Equivalently, the same information establishes the control effort u1test, required to produce a constant force on the magnet Fw(equal to the magnet’s weight) as a function of magnet height.  Plot your data from 6.1.2 showing this required control effort, k*ucor (= u1raw) as a function of magnet height.  Solve for coefficients {a, b} to fit this data with a function
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(6.1-3) 


within a tolerance of ≤400 counts at a given height. From the closeness of the fit of Eq. (6.1-3) to your data, is the form of this equation a reasonably close approximation of the coil-magnet force term in Eq.(5.1-3?)  (As a point of reference, typical servo amplifier nonlinearities are on the order of 2-10%) What are the units of the denominator in the right hand side of Eq.(6.1-3)?  

In certain control schemes, we shall later invert (approximately) the actuator nonlinearity in a real-time algorithm according to
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(6.1-4) 

where y1cal is the available measurement or estimate of the magnet position, and Fu1 is the force on the magnet.  For convenience of notation, we define
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(6.1-5) 

with Ku1 being the nonlinear control effort compensation routine.  (In real-time processing, the values sent to the DAC will be u1 Ku1).  Solve for the coefficients {ac,bc} with scaling such that when u1 = 10,000 counts, a force of 1 N is exerted on the magnet. 

The attractive magnetic characteristic (force v. distance) of the upper coil/magnet is essentially the same as the repulsive one of the lower coil/magnet.  Assuming that the upper actuator is configured so that a positive control effort imparts an attractive force on the magnet, what are ac and bc for the upper actuator?
C.
From the data of Table 6.1-3, find a set of coefficients {c,d} in the relationship
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(6.1-6) 

so that the inter-magnet force Fm12 for a given magnet-to-magnet separation y12 is within 300 N of the data values in the table.  From the closeness of the fit of Eq. (6.1-6) to your data, is the form of this equation (fourth order denominator) a reasonably close approximation of the coil-magnet force term in Eq. (5.1-7?)
D.
State the measured value of the weight of the magnet in Section 6.1.4.  Can you think of a simple way to physically manipulate the MagLev apparatus to obtain the measured magnet separation for weights less than this value as shown in Table 6.1-3? 

6.1.5  Verification of Calibration / linearization Results

In this section we verify through real-time implementation that the derived calibration and linearization expressions from the previous sections are valid.
Preparation 

1.
Generate a real-time algorithm that operates on the raw sensor data (this is the global variable sensor1_pos in the real-time environment
) and outputs the linearized position measurement, y1cal.  Assign the variable q10 to the values of y1cal. (this is one of four variables, q10 through q13, available for general plotting - see Section 2.1.7).  Assign both control_effort1 and control_effort2 equal to zero to assure that no current is driven through the coils. 
2.
Generate a second algorithm that applies a constant force to the magnet equal to one half the weight of the magnet.  The algorithm should use the linearized position routine (y1cal) from the previous step and generate a constant control effort as per the relationship of Eq. (6.1.4).  The output of this algorithm assigns the appropriate real-time value to the variable control_effort1.  (Recall that control_effort1 is a special variable whose value gets written to the DAC for voltage output to the servo amplifier and subsequent current output to the coil)
3.
Have your laboratory supervisor check and approve both algorithms before proceeding.
Procedure 

4.
Implement the algorithm of Step 1 as per the process of Step 2 of Section 6.1.2 with Ts=0.00442s. selected.  Save this in a file for later use.
5.
Go to Trajectory 1 Configuration under the Setup menu and enter Step.  Specify a Step Size of 0 counts, a Dwell Time of 15000 ms, and 1 repetition (this prepares the system to execute a zero valued input for a total duration of 30 sec while data may be acquired)  Select OK, successively and enter Setup Data Acquisition (Setup menu).  Specify Sensor 1 Position and Q10 as data to be acquired with a Sample Period of 5 servo cycles.  Verify that the sensor calibration is set up as described in Step 2 of Section 6.1.1.  (In the future, the sensor calibration will be specified via this dialog box for convenience).
6.
Go to Execute (Command menu) and specify Normal Data Sampling and Execute Trajectory 1 only. Prepare to manually move the magnet (clean hands, edges only!) incrementally in steps of 1 cm. from 0 to 6 cm. as measured visually via the ruler.  You should wait for about a second, then move the magnet to the 1 cm position and hold it there for one or two seconds, then move on to the next whole centimeter position.  Practice doing this so you can complete all seven positions within 30 seconds while holding it still briefly at each position.  Select Run and perform the described procedure.

7.
Go to Setup Plot (Plotting menu), and plot the Sensor 1 (raw) data on the left vertical axis and q10 on the right.  You may want to rescale the plot axes via Axis Scaling.  The plot should show the nonlinear characteristic of the raw sensor data and the linear nature of the corrected output.  You may repeat Step 6 if you are dissatisfied with your result.  Print and save (Plotting menu) your plot.  You may repeat this process for the upper sensor if you wish.
8.
Implement the algorithm generated under Step 2 above.  In this and all subsequent procedures, do not move the magnet beyond 4.0 cm. height.  This will cause excessive current to flow through the actuator coils and could damage the equipment.  Slowly move the magnet through the 0 to 4 cm. operational range.  Can you feel it’s apparent weight being approximately half its true weight?  Observe the Control Effort 1 value displayed on the Background Screen.  How does it vary with position of the magnet?  Modify the algorithm so that the upward force is approximately equal to the magnet weight.  Hold on to the edge of the magnet and implement the algorithm.  Does the magnet feel approximately weightless through the operational range?  Again observe the change in control effort with position.  You may make another trial with the control effort equal to 1.2x the magnets weight. (This time do not exceed a height of 3 cm.).  In this case do not move the magnet beyond 3.5 cm & make sure that you hold on to the magnet when you implement the algorithm!  Save the algorithm to a file for later use.
Questions / Exercises:
E.
Submit your plot of the sensor output v. position from Step 7.  Describe the salient differences between the raw and corrected sensor signals.

F.
Describe the change in control effort with magnet position from Step 8. Explain briefly.  Does the effective force on the magnet change appreciably?  Explain briefly.

G.
Figure 6.1-2 is a control block diagram for a single magnet (at the lower position, sensor/actuator #1) showing the nonlinear elements of the magnetic field and sensor and the effect of gravity acting on the magnet.  It also contains a forward path Controller block and the linear portion of the plant dynamics, G(s).  Expand on this block diagram to show where the compensation algorithms developed in Sections 6.5.1&2 (i.e. y1cal (y1raw) and Ku1 (y1cal)) may be introduced to effectively remove the nonlinearities.  Include the signal flow from the position measurement to the control effort compensation.  Indicate which elements would be implemented in real-time processing and which are part of the “natural” system.  Show also where a feedforward signal may be introduced to negate the effects of gravity.  When introduced in the proper location in the signal flow, this signal can compensate for gravity for all y1 in the operational range.  Are the nonlinearity compensation and gravity feedforward algorithms static (time independent) or dynamic in nature?  Describe how would this block diagram be changed to depict the system of a magnet in the upper position (sensor/actuator #2)?

H.
Draw a simplified block diagram of the system assuming that the sensor and control effort algorithms are effective at linearizing the respective nonlinearities.  For later control design purposes, the system gain must be evaluated.  For a system of this type
, the forward path gain – which we will call ku, - is the amount of force imparted on the plant per unit of control effort.   The return path gain – which we will call ks - is the position measurement signal value per unit length of motion at the plant output.  For purposes of calculating the gains, all physical properties should be evaluated in terms of consistent SI units.  On your block diagram, show the value of the gains net of the sensor and control effort compensation algorithms as ks and ku respectively and indicate their value and units.

What is the expression for ku in the case that control effort nonlinearity compensation is not included? What is the expression for ks in the case that the sensor nonlinearity compensation is not included?

 What are their units?  

The system gain, ksys 
 is defined as follows


    [image: image75.wmf] the product of all the gains in the loop except the controller
(6.1-7)

What is the value of ksys for the fully compensated system?  What are its units?  In general terms, how does the system gain change with position for the uncompensated sensor and actuator?
I.
For control modeling purposes, the system gain should be lumped with the plant model (e.g. as a factor in the numerator of a SISO transfer function).  Based on your parameter values obtained in this section and the appropriate equations in Chapter 5, construct the numeric plant models for three cases for the lower (sensor/actuator #1) SISO plant.  Express your answer in transfer function and state space forms.
1)
A system using the raw sensor counts as feedback and no compensation of the actuator nonlinearity.  The plant should be linearized about the operating point y1o = 2.0 cm and u1o = control effort required to maintain static equilibrium at y1o.  
2)
The same as 1 above except the sensor nonlinearity is compensated for.

3)
The same as 2 except the actuator nonlinearity is compensated for and the system may operate throughout its range (i.e. the model is not linearized about any particular operating point).
Repeat steps 1 through 3 above for the upper sensor/coil location where the equilibrium point (where applicable) is about y2o = -2.0 cm and u2o is the control effort required to maintain this equilibrium.
J.
Construct the numerical plant model for the MIMO system with the magnets stacked so that they repel each other.  Construct both the transfer matrix and state space models for each of the three nonlinear compensation approaches (no compensation, sensor compensation, sensor & actuator compensation) described in Exercise I.  The equilibrium positions are y1o =1.0 cm, y2o =-2.0 cm.  In the case of the fully compensated plant, the magnet-to-magnet interaction force, Fm12 will remain as a nonlinear term.  You may use the linearized term, k’12 for this force where linearization is about the equilibrium positions above.  You may assume that the available magnet travel distance, yc = 13.3 cm.
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Figure 6.1-2.   Block Diagram of SISO System Showing Nonlinear Elements













































6.2
Nonlinear Plant Control: Linearization About Operating Point
This section implements a simple linear proportional plus rate feedback controller about the nonlinear plant.  It uses the uncompensated plant and associated model developed in the last section.  The control effort to offset gravity at the operating point is fed forward.  The block diagram of the closed loop system is shown in Figure 6.2-1.

[image: image84.wmf]
Figure 6.2-1.   Reduction of System to Linearized Form
In the procedures that follow, we will design a controller for the linearized system model and measure the effectiveness of the control system for small and large motions about the operating point.  We will also investigate the stability (and instability) of the plant and its implication to closed loop stability. 
The closed loop block diagram using proportional plus rate feedback control is shown in Figure 6.2-2.
  It incorporates the linearized plant model and assumes the gravity feedforward uio offsets the effect of gravity on the magnet at equilibrium.  
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Figure 6.2-2.   Control Design Block Diagrams
From Figure 6.2-2, the closed loop transfer functions for the lower (repulsive) and upper (attractive) systems are respectively:
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(6.2-1)
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(6.2-2)
Considering the lower plant and defining:
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(6.2-3)
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(6.2-4)
we may express:
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(6.2-5)
This form also holds for the upper plant where the value of k2’ is typically negative
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(6.2-6)
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(6.2-7)
Procedure :

PD Control Design
1.
Using the appropriate numerical models of the previous section and the expressions above, design controllers (i.e. find kp & kd) for a system natural frequency n = 4 Hz, and  = 0.5 for both the lower (repulsive levitation) and upper (attractive levitation) locations.  Design also the gains required for n = Hz and  = 0.5 in each case.
2.
Generate a real time control routine that implements the block diagram of Figures 6.2-1a and 6.2-2a for the lower coil/sensor system and includes the following.  The equilibrium operating point should be at y1o = 2.0 cm.
a)
execution of the real-time PD algorithm shown in Figure 6.2-2.

b)
feedforward of the equilibrium gravity offset control effort u1o
c)
subtraction of the equilibrium position, yrawo, from the feedback sensor signal yraw  to provide y*raw for control law execution and plotting.
d)
use of the backwards difference transformation to implement discrete time differentiation according to
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(6.2-8)
to approximate the rate feedback signal with a sample period of 0.884 ms.
e)
use of cmd1_pos as the reference input to the controller.
3.
Repeat Step 2 for the upper system.  Have your laboratory supervisor review and approve your algorithms before proceeding.  Your control gains should be in the range of –2≤ kp <0, -0.1≤ kd ≤-0.02 for the lower magnet/coil system and 1≤ kp ≤4, 0.02≤ kd ≤ 0.1 for the upper system.  You may wish to use cmd2_pos as the reference input signal (it is also possible to use cmd1_pos).  The equilibrium should be calculated for y2o = -2.0 cm.
PD Control Implementation – Lower Magnet Position
4.
Set-up the plant with a single magnet with the north pole facing upward (See Section 2.2.2; handle magnets by edges only and do not touch the glass rod with bare hands [e.g. use a clean cloth]).  Verify that Use Raw Sensor Counts and Apply Sensor Calibration are selected under Setup Sensor Calibration.
5.
Turn on power to the Control Box. Enter the Control Algorithm box under Set-up and set Ts=0.000884 s.  Implement your algorithm from Step 2 above.  The magnet should levitate to the 2 cm. position.  Use a clean non-sharp object such as the eraser end of a pencil to lightly perturb the magnet to assure that the control system is stable.  
6.
Set-up to collect Sensor #1 information via the Set-up Data Acquisition box in the Data menu with data acquisition sample period of 5 servo cycles (Ts’s).  Set up a Step  trajectory of 10000 counts, dwell time = 1000 ms, and 2  repetitions (Trajectory 1 Configuration box in the Command menu).  Set this for a set of bidirectional steps (one up, one down) by deselecting Unidirectional moves.  
7.
Execute the bidirectional step maneuver and plot the Sensor 1 data.  Save your plot.  Note the shape of the response and the relative magnitudes of the upward and downward going curves.  Note also the polarity of the plotted magnet motion v. the direction the magnet actually moved during the maneuver.  
8.
Increase the step amplitude to 15000 counts and repeat the step maneuver.  Continue increasing the amplitude in increments of 5000 counts until the magnet contacts the lower limit of travel (mechanical stop) during the downward portion of the maneuver.
 Plot and save the case prior to this where the magnet does not contact the bottom.  Record the input trajectory amplitude.  Note the shape of the positive and negative going system step responses. 

9.
Repeat Steps 5 through 8 for the 6 Hz control gains from Step 1 except perform the first step maneuver with an input amplitude of 3000 counts. (This yields roughly the same output amplitude as 10000 counts for the 4 Hz system.  You should verify this from the results and be prepared to explain why this is the case.)  Increase the amplitude in increments of 2000 counts to find the limiting amplitude without contacting the mechanical stop.  
Control Implementation—Upper Magnet Position
10.
Set the plastic clip on the glass rod (See Section 2.2.2) so that the magnet cannot fall below 4 cm from the upper mechanical stop.  Prepare to implement your 4 Hz algorithm for the upper magnet position from Step 3.  While holding the magnet at the approximate y2 =-2 cm position, implement the algorithm.

11.
Execute a 1500 count bidirectional step (set this up via “Trajectory 2 if cmd2_pos is used in the control routine for the upper location) and plot and save the Sensor 2 data.  Slowly increase the amplitude (e.g. use roughly 500 count increments initially, then smaller ones) and find the limiting case where the magnet remains levitated during the downward step but falls to the plastic safety clip
 during this leg of the maneuver for any greater amplitude input trajectory.  Plot and save this limiting case. 

12.
Repeat Steps 10 and 11 for the 6 Hz controller.  
Questions:
A.
Consider the “linearized plant” for the repulsive levitation system in Figure 6.2-2a.  Is this plant stable or unstable?  Assuming kpksys and kdksys are positive, are there any conditions on these gains for the system of Eq,. (6.2-1) to be stable?
B.
Does the polarity of the physical motion of the magnet agree with that of the plotted data (i.e. does the plotted data increase with upward motion of the magnet)?  Explain.  Describe the symmetry of the positive-going v. the negative-going (physical magnet motion) step responses for the lower position 4 Hz control system for the initial 10000 count trajectory.  Describe this for the large amplitude steps (i.e. the largest case measured without contacting the mechanical stop).  As will be studied later, the degree of overshoot and oscillation in the step response correspond to the effective damping ratio 
.  Explain the differences in symmetry for each case in terms of the differences in ksys at the various positions of the magnet during the maneuvers, and its effect on damping ratio [Eq. (6.2-4)] and steady state position error [via Eq. (6.2-1)].  

C.
Repeat Exercise B for the case of the 6 Hz system in the lower magnet position.  Compare the 4 Hz and 6 Hz responses.  How do their symmetries of response (upward v. downward motion) compare with respect to their apparent damping.  How do they compare with respect to steady state error (for a given reference input or trajectory amplitude)?
D.
Consider the “linearized plant” in Figure 6.2-2b for the upper magnet position.  Is this plant stable or unstable?  Assuming kp ksys and kd are positive, are there any conditions on these gains for the system of Eq,. (6.2-2) to be stable?  If so what are they?
E.
Does the polarity of the physical motion of the magnet agree with that of the plotted data?  Explain.  Describe the symmetry of the positive-going v. the negative-going step responses for the upper position 4 Hz control system for the initial 2000 count trajectory.  Describe this for the large amplitude steps (the largest without the magnet falling to the safety clip).  Explain the differences in symmetry for each case in terms of the differences in ksys at the various positions of the magnet during the maneuvers, and its effect on damping ratio and steady state position error [via Eq. (6.2-2)].  For a fixed position gain, kp, there is a position at which reduction in the system gain results in instability.  Find an expression for this position.
F.
Repeat Exercise E for the case of the 6 Hz system in the upper magnet position.  Compare the 4 Hz and 6 Hz responses.  How do their symmetries of response (upward v. downward motion) compare with respect to their apparent damping.  How do they compare with respect to steady state error (for a given reference input or trajectory amplitude)?  Which system has greater range of downward motion before the magnet falls away (system becomes unstable).  Explain.

6.3
Control of Nonlinear Compensated SISO Systems

In this experiment, we shall employ the real-time algorithms established in Section 6.1 to compensate for the sensor and actuator nonlinearities and reduce the control design to that involving a simple rigid body plant.  The detailed diagram showing the nonlinear compensation blocks that reduce to the form of Figure 6.3-1 was given as an exercise in Section 6.1
[image: image94.wmf]
Figure 6.3-1.  Block Diagram Model for System with Nonlinear Compensated Plant

We shall employ PD control and begin by reviewing some basic characteristics of PID controlled rigid body plants.  The block diagrams for forward and return path derivative action are shown in Figure 6.3-2.  The corresponding transfer functions are for the respective subfigures “a” and “b”:
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(6.3-1a)
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(6.3-1b)
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Figure 6.3-2.  Rigid Body PID Control – Control Block Diagram
For the present experiments, we shall consider PD control only (ki=0).  For the case of kd in the return path the closed loop transfer function reduces to:
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(6.3-2)

By defining:


[image: image103.wmf]
(6.3-3)
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(6.3-4)
we may express:
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(6.3-5)

We shall implement PD control structures on the nonlinear compensated plant in this section.  In the next section we shall demonstrate the salient properties of the above class of system and study the effect of changing kp and kd.
Procedure :

Control Design
1.
Using the appropriate numerical model of Section 6.1 and the expressions above, design controllers (i.e. find kp & kd) for a system natural frequency n = 6 Hz, and damping ratio  = 0.707 for both the lower (repulsive levitation) and upper (attractive levitation) locations.

2.
Generate a real time control routine that implements the block diagram of Figures 6.3-2b and your detailed block diagram from Exercise G of Section 6.1 for nonlinear compensation.  You may use the routines developed in Section 6.1 for the nonlinear control effort compensation.  You may use the dialog box Setup Sensor Calibration to implement the sensor compensation coefficients (the global variable sensor1_pos then linearized). This routine should be for the lower (repulsive) system with the operating point set at y1o =2.0 cm and include the following:

b)
feedforward of the equilibrium gravity offset control effort u1o (recall that in this case u1o is scaled in units of N/10000 counts)
c)
subtraction of the equilibrium position, y1o, from the sensor signal y1  to provide y*1 for control law execution

d)
assign the global variable q10= y*1  (this makes y*1  available for plotting)
d)
use of the backwards difference discrete time differentiation to approximate the rate feedback signal with a sample period of 1.768 ms.

e)
use of cmd1_pos as the reference input to the controller.
3.
Repeat Step 2 for the case of the upper (attractive) system using cmd2_pos as the reference input, the nominal position as y2o = -2.0 cm., and making all other appropriate changes in notation of the parameters and variables.
Procedure :
Control Implementation 
4.
Set-up the plant with a single magnet with the north pole facing upward (See Section 2.2.2, handle magnets by edges only and do not touch the glass rod with bare hands [e.g. use a clean cloth])

5.
Turn on power to the Control Box. Enter the Control Algorithm box under Set-up and set Ts=0.001768 s.  Implement your algorithm from Step 2 above.  The magnet should levitate to the 2 cm. Position.  Use a clean non-sharp object such as the eraser end of a pencil to lightly perturb the magnet to assure that the control system is stable.  

6.
Set-up to collect Variable Q10 (y*1), Commanded Position 1, and Control Effort 1 information via the Set-up Data Acquisition box in the Data menu with the data acquisition sample period set for every 5 servo cycles.  Set up a Step  trajectory of 15000 counts, dwell time = 1000 ms, and 2  repetitions.  Set this for a set of bidirectional steps  by deselecting Unidirectional moves.  

7.
Execute the step maneuver and plot the Variable Q10 and Commanded Position 1 data.  Plot a second graph showing the control effort (use right hand plot axis)  Save your plots.
Control Implementation—Upper Magnet Position

8.
Set the plastic clip on the glass rod (See Section 2.2.2) so that the magnet cannot fall below 4 cm from the upper mechanical stop.  Prepare to implement your algorithm for the upper magnet position from Step 3.  While holding the magnet at the approximate y2 =-2 cm position, implement the algorithm.

9.
Set-up to collect Variable Q10 (y*1), Commanded Position 2, and Control Effort 2 data.  Execute a 10000 count bidirectional step and plot the Variable Q10 and Commanded Position 2 data.  Plot a second graph showing the control effort (use right hand plot axis)  Save your plots.




























Questions:
A.
Compare the responses obtained in this section with those of the previous section.  Specifically, how do the symmetry of response and steady-state errors compare?  Is the upper position (attractive levitation) response substantially different than the lower one?  Explain.
B.
Consider the control effort data from the maneuvers of this section.  Visually average the data (approximate its mean value) through each step segment.  Describe the relative change in control effort with magnet position (i.e. its absolute position relative to the coil) for both the upper and lower magnets. What is the relationship between control effort and dissipated power (hence heat) in the drive coil?  What is the approximate ratio of power dissipated in the lower coil between the lower and higher levitated heights of the step maneuver?  Does the control effort exhibit more or less noise than the position sensor signal?  Why? 







6.4
Fundamental Properties Of Second Order Systems

This experiment demonstrates some key concepts associated with proportional plus derivative (PD) control and subsequently the effects of adding integral action (PID).  This control scheme, acting on plants modeled as rigid bodies finds broader application in industry than any other.  It is employed in such diverse areas as machine tools, automobiles (cruise control), and spacecraft (attitude and gimbal control).  The block diagram for forward path PID control of a rigid body was shown in Figure 6.3-2a where friction is neglected.
  Figure 6.3-2b shows the case where the derivative term is in the return path.  Both implementations are found commonly in application and –as the student should verify – have identical characteristic roots.  They therefore have identical stability properties and vary only in their response to dynamic inputs.
The S-domain equations that describe these systems were presented in the previous section.  In this section the effect of kp and kd on the roots of the denominator (damped second order oscillator) of Eq (6.3-5) is studied and the associated transient and frequency responses are demonstrated.  
Procedure :

Proportional & Derivative Control Actions
1.
Set-up the plant with a single magnet with the north pole facing upward (See Section 2.2.2, handle magnets by edges only and do not touch the glass rod with bare hands [e.g. use a clean cloth])
2.
Edit your control algorithm from the previous section to set the proportional gain, kp, equal to zero and the derivative gain, kd unchanged.  Verify that sampling time is set to Ts =0.001768 sec.
3.
Hold the magnet (edges only) at the approximate 2 cm. position and implement the algorithm.  Move the magnet back and forth briskly through a range of roughly 0 to 3 cm. (do not exceed 3.5 cm.)  Move it slowly at first and then more rapidly.  Do not move the magnet so rapidly as to set up a large control force (i.e. no greater than approximately 2x the magnet weight). What is the nature of the resistive force imparted by the control system?

4.
Double the value of kd and repeat Step 3.  Can you feel the control force increase?
5.
Edit your algorithm to set kp equal to the same value as used in the previous section and kd equal to zero.  Hold the magnet (edges only) at the approximate 2 cm. position and implement the algorithm. Move the magnet through a range of ± 0.5 cm. What is the nature of the resistive force imparted by the control system?

6.
Edit your algorithm to double the value of kp.  Repeat Step 5 and note the change in force characteristic.

PD Control Design
7.
From Eq's (6.3-3,-4) design controllers (i.e. find kp & kd) for two systems, one with a system natural frequency n = 4 Hz, and damping ratio  = 0.05 and one with n = 8 Hz and  = 0.25
.

8.
Design a controller with n = 6 Hz and three damping cases:  1)  = 0.2 (under-damped),  2)  = 1.0 (critically damped),  3)  = 2.0 (over-damped). 

Step Response
9.
Edit your algorithm to set the initial offset to y1o = 15000 counts (nominally 1.5 cm.)  Implement the 4 Hz design from Step7 and set up a trajectory of 10000 count amplitude with 1000 ms dwell time and 1 repetition.
10.
Execute the Step command and plot the Commanded Position and Q10 (y*1) data.  Note the frequency of oscillations (number of cycles divided by the corresponding time) in the response.  Save your plot.
11.
Repeat Step 10 for the 8 Hz design of Step 7.

12.
Implement the three controllers of Step 8 and execute and plot the step response.  Note the effect of changing damping in each case.  Save your plots.
Frequency Response


Review the discussion at the end of this section regarding the use of various sine sweep data scaling options prior to completing Step 13.

13.
Edit your algorithm to set the initial offset to y1o = 20000 counts
 and set the gains for the n = 6 Hz, = 0.2 design from Step 8.  Implement this algorithm and check the Sensor 1 display on the background screen.  If not within 20000±100 counts, adjust the gravity offset in your algorithm so that the Sensor 1 value falls within this range.  (This helps keep the magnet position from drifting during high frequency excitation.)
14.
Setup a Sine Sweep trajectory with 5000 count Amplitude
, a Start Frequency of 0.1 Hz, End Frequency of 30 Hz, Sweep Time of 30 sec. and Logarithmic Sweep checked.  
15.
Setup to collect Variable Q10 and Commanded Position 1 data every 4 Servo Cycles.
16.
Execute the sine sweep and plot the Variable Q10 and Commanded Position 1 data using Linear Time and Linear amplitude for the horizontal and vertical axes (Remove DC Bias checked).  The data will reflect the system motion seen as the sine sweep was performed.  Now plot the same data using Logarithmic Frequency and Db amplitude.  By considering the amplitude (the upper most portion of the data curve) you will see the data in the format commonly found in the literature for Bode magnitude plots.  Can you easily identify the resonance frequency and the high frequency (>5 Hz) and low frequency (< 0.8 Hz) gain slopes? (i.e. in Db/decade).
17.
Repeat Step 16 for the critically damped and overdamped control gains.  You may need to reduce the upper frequency on the sine sweep (to say 10 Hz) in the overdamped case if the high frequency response is irregular (does not diminish smoothly with frequency).  Such an irregular response is due to system noise propagation, which results from differentiation of the laser sensor signal.
Adding Integral Action
18.
Modify your algorithm to reduce the gravity force offset, uo, by 20%.  This will cause a steady state error in the PD controlled system.  Also modify your algorithm to introduce integral action according to Figure 6.3-2b.  You may use the backwards difference approximation of s (Eq. (6.2-8)) or other transformation as suggested by your instructor.  Set the position offset to y1o = 15000 counts.  Have your laboratory instructor or supervisor check your algorithm before proceeding.
19.
Set the integral term in your algorithm equal to zero and kp and kd to values for the case of n =6 Hz, =1.0.  Perform a 15000 count unidirectional step of 2000 ms duration.  Plot and save the Variable Q10 and Commanded Position 1 data.  Note the steady state error in the response.
20.
Compute the integral term such that kiksys = 800 N/(m-s) and implement you algorithm containing this value.  Execute the trajectory of Step 19 and plot and save your data.  Note the shape of the curve and the steady state error.  Grasp the magnet by the edges and lightly apply a upward or downward force. Do not allow the force to build up more than twice the magnet weight.  Can you feel the nature of the restoring force – i.e. that it grows over time for a given error (proportional to the integral of the error over time)?
21.
Repeat Step 20 for kiksys = 2000 N/(m-s).  Note the change in the shape of the response.

Questions:
A.
What is the effect of the system gain, ksys, the inertia, m, and the control gains, kp and kd on the natural frequency and damping ratio?  Derive the transfer function for the spring/mass/damper system shown in Figure 6.4-1.  How do the viscous damping constant, c, and the spring constant k correspond to the control gains kd and kp in the PD controlled rigid body of Figure 6.3-2b?  What are the units of kdksys and kpksys and how do these relate to the units of the corresponding parameters of Figure 6.4-1.
B.
Describe the effects of natural frequency and damping ratio on the characteristic roots of Eq’s 6.2-1.  Use an S-plane diagram in your answer to show the effect of changing  from 0 to ∞ for a given n.

C.
Compare the step response and frequency response plots for the under-, critical, and overdamped cases (ki = 0).  Discuss how the resonance (if present), and bandwidth 
 seen in the frequency response data correlate with features of the step responses.  

D.
What is the general shape of the frequency response amplitude (i.e. amplitude vs. time) of the three plots obtained in Steps 16 and 17 (linear time / linear amplitude) at amplitudes well below and above n?  What is the shape when viewing the same data plotted with log() / Db scaling?  Explain your answer in terms of the asymptotic properties of the closed loop transfer functions as  tends to zero and infinity.

E.
Review the two step response plots obtained by adding integral action (Steps 20 & 21) with the first response obtained without integral action damped plot (ki = 0) of Step 19.  What is the effect of the integral action on steady state error?  


Static or Coulomb friction may be modeled as some disturbance force acting on the output as shown in Figure 6.4-2.  Assume that this force to be a constant
, and use the final value theorem to explain the effect of the disturbance on the PD controlled system with and without the addition of integral action.  


In what way does integral action effect overshoot in the step response (again, compare with the critically damped plot of Step 19)?  Why?
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Figure 6.4-1.  Classical Second Order Damped Oscillator
[image: image111.wmf]
Figure 6.4-2.  System With Disturbance Force at Output

Viewing Sine Sweep (Frequency Response) Plots
Much insight into frequency response behavior is afforded by viewing the sine sweep plots in the various data scaling functions available in the Setup Plot dialog box.  By viewing data in the Linear Time - Linear Amplitude modes, the curve appears as the system motion is viewed during the sine sweep.  Note the large range in amplitudes as frequency changes.  In Linear Frequency - Linear Amplitude mode, the amplitude is as before but the data is shown in with frequency of oscillation as the horizontal coordinate so that amplitude may be associated with a particular frequency.  

In Logarithmic Frequency - Linear Amplitude mode the frequency is distributed logarithmically (the sine sweep was executed this way in our case).  This is an appropriate frequency scaling function in many cases because magnitude changes of linear systems occur as powers (e.g. ,  -1,  -2, etc.) of the excitation frequency and hence often occur over a large dynamic range of frequency.  For example the change in output between 0.1 and 0.2 Hz may be greater than that between 9 and 10 Hz but would be difficult to ascertain in a linear frequency distribution between say 0.1 and 10 Hz because they would constitute only 1% of the plot length.  Similarly, phase changes are symmetrically shaped in a logarithmic frequency distribution.

In Logarithmic Frequency - Db mode the frequency is distributed logarithmically and the magnitude is in Db.  This method of data presentation, once the user is familiar with it, quickly affords much information about the system.  The response magnitude asymptotically tends toward straight lines whose slope is associated with the salient system dynamics (i.e. the powers of  mentioned above).

In ECP systems, the Db magnitude (see Eq. 6.2-6) of each data point is taken so that the upper bound of the trace represents the cycle-to-cycle maximum amplitude.  In virtually all other plots that the engineer may encounter, peak Db magnitude is shown as a pure function of frequency  - i.e. it is a single curve on the plot.  Thus the mapping of actual test data into the frequency-Db format, as done here, affords physical insight into the meaning of these important analytical and design tools.


Db(y) = 20 log(y)
(6.4-1)

The methods of Log() - Db Magnitude scaling, and Log()- Linear Phase scaling are widely used in industrial and academic practice.

The Remove DC bias check box subtracts the average of the last 50 data points from all points on the curve to provide results that are centered about zero at high frequency.  It generally provides better appearance to plots that have low amplitude in the high frequency section (e.g. all y1 and y2 sine sweeps in this manual) and is necessary in many cases to obtain useful Db data at high frequency.  It may provide misleading results, however, if the bias of the original data or the amplitude in the final 50 points is large.

6.5
Disturbance Rejection of Various 1 DOF Plant Controllers

In this experiment, we consider the performance of three distinct controller designs in rejecting low and higher frequency disturbances.  A disturbance is easily imparted using the Model 730 Apparatus by controlling the position of one magnet (The upper one in this case) and measuring the effect of the resulting changes in force on the other magnet.  It is important to keep in mind while running this experiment that the upper magnet motion is simply imparting a disturbance force to the lower one.  It is the study of the effectiveness of various control schemes (applied to the lower magnet) at rejecting this disturbance force that is the focus of this experiment.

The plant should be setup with two magnets so that the north pole of the lower magnet points upward and that of the upper magnet points downward.  Take great care in handling the magnets to avoid sudden collision of the magnets by virtue of their high attractive forces.   Follow the instructions and precautions of Section 2.2
Procedure :

Setup Disturbance Apparatus

1.
The three controllers to be studied are as follows:

a)
PD control with n ≈ 3 Hz and  ≈ 0.5, and feedback at Encoder #1.  
b)
Same as "a" plus added integral action: kiksys = 1000.

c)
Same as "a" plus a cascaded lead/lag filter with the following specifications:  Zero at 0.25 Hz,  Pole at 1.5 Hz,  DC gain = 1.  

Design the lead/lag filter for controller "c".  [Hence find no, n1, do, and d1 in  F(s) = (no+n1s)/(do+d1s)]  Use Ts = 1.768 ms. in each case.
2.
Modify your algorithm to include both PD control of the upper magnet and a control algorithm for the lower magnet that is capable of implementing the three controllers above
. The combined routine should incorporate the following.

a)
Set the offset positions to y1o = 15000, y2o = -20000.

b)
Use for the gravity offsets: u1o = 18800, u2o = 4800
 
c)
Use the following gains for the upper magnet controller: kp = 3.1, kd=0.1.
  
d)
Use cmd2_pos as the reference input for the upper magnet controller
Have your instructor or laboratory supervisor approve your algorithm before proceeding.
3.
Set up a Sinusoidal trajectory of 0.1 Hz frequency, 10000 count amplitude and 3 repetitions for the upper magnet.  (You should reduce the data acquisition sampling frequency to once every 10-20 servo cycles to avoid an unnecessarily large data file.  You need only collect Variable Q10 and Variable Q12 data).  Input your routine set up to implement Controller “a” above using Ts = 0.001768 sec.  Execute the above trajectory selecting Execute Trajectory 2 Only in the Execute dialog box.  This drives the upper magnet at 0.1 Hz while the lower magnet (the focus of this experiment) remains under regulation.  Plot and save the Variable Q10 and Variable Q12 (i.e. the regulated system and disturbance) data.  Scale your plot so that the disturbance and the response of the regulated system appear separately (one above and one below) on the plot.  Repeat this disturbance regulation test for controllers “b” and “c” 
4.
Repeat this procedure for controllers “a”, “b”, and “c” for a disturbance frequency of 3.0 Hz and of the same amplitude as above.  You should increase the number of cycles to 30 or more so that the total duration of the plots is of the same order as that of the 0.1 Hz plots.  You may also want to increase the data acquisition sampling frequency somewhat.

Questions:
A.
Consider the block diagram of Figure 6.5-1.  Derive the open loop transfer function 



[image: image113.wmf]
(6.5-1)

and closed loop transfer function y1(s) / Fd(s) for each controller. 

B.
Plot the Bode response for the open and closed loop transfer functions in each of the three controller cases.  Explain the disturbance attenuation characteristics of each controller in terms of their Bode response. 
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Figure 6.5-1 Disturbance Force Input To Rigid Body Control Scheme

6.6
Collocated Control of SIMO Plant
In this experiment we consider the plant configured with two magnets stacked on the glass rod and utilize only the lower coil/magnet actuator.  In mechanical systems when the primary feedback sensor is rigidly coupled to the actuator, the system is referred to as being collocated.  When some flexible structural member exists between the actuator and the sensor
, the system is referred to as being noncollocated.  Systems with flexibly coupled inertia occur commonly in the industry.  Examples include flexible drive shafts, conveyor belts, and other mechanical linkages.  An example of collocated control in such cases is when the feedback sensor is integral with the drive motor even though there may be flexible elements that are driven by the motor.  An example of noncollocated control is when a flexible conveyor belt position is fed back for closed loop control. 

The open loop system is analogous to that of Figure 6.6-1 which reflects the effective use of the nonlinear control effort, gravity feedforward, and sensor compensation routines used in previous sections.  The effective “spring” is the linearized term resulting from the forces of gravity and magnetic repulsion acting on the second magnet.  Recall however that this term is in fact quite nonlinear.  Recall also that we have neglected the interaction of the second magnet with the magnetic field of the drive coil.
The addition of the spring and second inertia to the rigid body case studied above increases the plant order by two and adds an oscillatory mode to the plant dynamics.  This may be thought of, in a sense, as a dynamic disturbance to the rigid body plant.  The collocated PD control implemented in this section is the approach most commonly used in industry.  It may be practically employed when there is flexibility between the actuator and some inertia, and the location of objective control is near the actuator.  If the location of objective control is at the distant inertia, however, this method has its limitations.
[image: image117.wmf]
Figure 6.6-1 Analogous System to Idealized SIMO Plant (Net of Nonlinear Compensation)
In examining this system we shall use the notation:


[image: image118.wmf]

(6.6-1)

The approach in this experiment will be to design the controller by interactively changing the PD gains and observing their effect on the physical system.  The control block diagram is shown in Figure 6.6-2
[image: image119.wmf]
Figure 6.6-2.  Control Block Diagram for Collocated Control Experiment
Collocated Control – Procedure :

1.
Set-up the system with two magnets in repulsion according to the instructions of Section 2.2.2.  
2.
Use your real time algorithm from the previous section and modify it as follows:

a.
Set the offset in y1 to y1o=10,000.  It is very important in this configuration to keep this offset small.  Do not exceed y1o =10000. In this configuration, the weight of both magnets plus the control actuation force is supplied by the lower coil.  The required current increases dramatically with height of the lower magnet.  Excessive amplitude for sustained duration will overheat the coil and damage the apparatus
b.
Adjust the gravity feedforward, u1o, to compensate for the support of the weight of two magnets through the bottom coil.
c.
Add a provision so that the second reference input, cmd2_pos, is output on the second DAC (control_effort2).  This will be used to apply a disturbance force to the upper magnet.

d.
 Use a sampling rate of Ts=0.001768 s.
Have your laboratory supervisor or instructor review and approve your algorithm before implementing it.
3.
Set the input trajectory to a unidirectional Step of 15000 count (nominally 1.5 cm.) amplitude and 1000 ms duration.  Set initial gain values to kp =1, kd =0.05.  Implement and obtain the step response of the upper and lower magnets.  If the plotted position offsets are large, you may want to adjust them as follows.  First increase or reduce the gravity offset to obtain Sensor 1 Position ≈ 10000 counts as seen on the background screen (you may want to spin the magnets in this process to release any Coulomb friction).  Next, adjust the upper magnet position offset equal to the Sensor 2 Position as read from the background 

Iteratively adjust the gains kp & kd, to obtain a rise time ≤200 ms (0-90% amplitude) in the lower magnet with overshoot less than 10%.  Make your gain adjustments gradually (not more than 50% at a time) and note the effects of increasing or reducing each of them.  Do not input kp >5 or 0.02 < kd > 0.12.  If the system becomes noisy (“rumbling” sound and erratic movement of the lower magnet) reduce kd.  If it becomes too oscillatory as seen at the lower magnet, increase kd (within the above bounds)
. Save your best step response plot.  Manually displace the upper and lower magnets (touch edges only!) and note their relative stiffness.  (The lower magnet stiffness is entirely due to the control system.

4.
For your last iteration in Step 3, plot and save the step response of the two magnets.  What is the predominant characteristic of the top magnet motion?  Can you give an explanation for the difference in the responses of the two magnets in terms of their closed loop transfer functions?  
Apply a disturbance to the upper magnet of magnitude 20000 counts in the downward direction using Trajectory 2. Select a unidirectional Impulse of 1000 ms pulse width, 2 repetitions, and 1000 ms dwell time.  It is recommended that you change your Trajectory 1 Step input to a duration (dwell time) of 2000 ms, 1 repetition, zero amplitude. Execute both trajectories (remember in this case that Trajectory 2 is simply imparting a disturbance force) with a delay of 500 ms for Trajectory 2 after Trajectory 1. Assure that the 20000 count control effort to the upper coil is applied only momentarily.  Plot the result and note the relative effect of the disturbance on each magnet.  
5.
Now using the existing values of kp & kd as starting points, iteratively reduce gains and plot results to provide a well-behaved step response in the upper magnet displacement, y*2, with ≤ 10% overshoot in both directions, without excessive oscillation, and as fast a rise time as possible.  Save your final plot and record the corresponding gains.  Manually displace the lower and upper magnets and note their stiffness.  Are they generally more or less stiff than for the controller of Step 3?  How does the steady state error compare with the high gain controller from Step 3? Repeat the disturbance input test of Step 4.  
Questions:
A.
Calculate the poles of the closed-loop transfer functions: y(s)/r(s) and y2(s)/r(s) for your final controllers in Steps 3 & 5 respectively assuming effective nonlinear compensation, linearity in the “spring k12’ and negligible friction.  How close to the imaginary axis (and right half plane) are the most lightly damped poles in each case?  How close are the complex poles of y(s)/r(s) to its zeros in each case?  Explain your answer in terms of the root loci for this system for gain ratios of kd/kp = 0.05, 0.10, 0.17, and 0.25.

B.
Calculate the closed loop transfer function in the form:
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(6.6-1) 


Use the open loop numerator and denominator, Nol and Dol, to obtain the open loop Nyquist or Bode responses resulting from your high and low gain controllers from Steps 3 & 5 respectively.  What are the associated phase and gain stability margins?  What are these margins for y(s)/r(s)?  Explain.

C.
Referring to Figure 6.6-3, the transfer function between the disturbance force and the first magnet position is:
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(6.6-2)



Use the final value theorem to find this expression for a constant disturbance force.  The inverse of this expression is called the static servo stiffness.  What is the static servo stiffness of your final controllers from Steps 3 &5 for the first magnet?  What is the equivalent expression for the second magnet (i.e. defining static stiffness at the second magnet as the force required to displace it one meter).  What is its value for the second controller at each location?  Explain the results of your disturbance response tests (latter parts of Steps 3 and 5) as to the relative responses at each location for the low and high gain controllers.  Recalling Section 6.5, what is the static stiffness with integral action in the controller (i.e. ki ≠0)?

[image: image124.wmf]
Figure 6.6-1.  Disturbance Forces On PD Controlled 2-DOF Plant

6.7
 Noncollocated SIMO Control: Successive Loop Closure





















In this experiment we explore noncollocated control where the actuator is at the lower magnet, and we are attempting to control the upper magnet using the upper sensor as the primary feedback.  In our approach, we first close a position loop about the collocated (y) position with a relatively high bandwidth (close tracking) control.  We then make the assumption that the lower magnet closely follows its internal demand r*(s) so that for designing a controller for y, the "plant" is approximated by the transfer function y(s)/ y(s) (i.e. N2/N1(s)).  The block diagram for this approach is given in Figure 6.7-1.  

The design and control implementation in this section proceeds as follows

1.
High bandwidth PD control of y

2.
Outer loop control via pole placement methodology 
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Figure 6.7-1.  Control Structure For Successive Loop Closure with High Gain Inner Loop













6.7.1  PD Control Of The Lower Magnet
1.  Setup the plant with two magnets as in the configuration of the previous experiment.  

PD Control Design & Implementation

2.
Design the PD control gains such that n = 8 Hz, and  = 0.707 when considering only the lower magnet  acting as a rigid body.

3.
Set the sampling rate to Ts = 0.001768 seconds and implement your control design using your algorithm of the previous section.  Make certain that the offset, y, is set to 10000 (not greater!).  Verify that the system is stable and gently perturb the upper and lower magnets to feel their relative stiffness.
6.7.2  Pole Placement Control of y2(s)/
Having closed a relatively high bandwidth (≈8 Hz) loop about the lower magnet, we utilize the fact that the transfer function of Eq. 6.3-2 has near unity input/output gain (and relatively small phase lag) through the bandwidth (≈ 4 Hz) that we will attempt to attain in the overall control of y2.  Thus for the control of y2 we consider the outer loop in the block diagram of Figure 6.6-1.

Now the plant to be controlled is:
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(6.7-2)

The numerical values of the parameters in this expression were determined in Section 6.1.  For convenience we restate
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(6.7-3)
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(6.7-4)

Here we have included the damping term to represent the friction at the upper magnet
.  Using this simplified model, the dynamics of the outer loop system become identical to those of the base motion controlled system shown in Figure 6.7-2.

[image: image136.wmf]
Figure 6.7-2.  Equivalent Idealized “Plant” For Control of Outer Loop 
We now seek to find a controller S(s)/R(s) which will result in a prescribed set of closed loop poles.  The closed loop denominator will have the form:
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(6.7-3)

which may be expressed as
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(6.7-4)

where the di's and ni's are the respective coefficients of the denominator and numerator of the right hand side of Eq. (6.7-2).  Their values are known from the plant model of Section 6.1 (except c2 which will be approximated in this experiment).
By linear system theory, for coprime N*(s), D*(s) with N*(s)/D*(s) proper, there exists an (n-1)th order S(s), R(s) which when convolved as per Eq. (6.7-3) form an arbitrary (2n-1)th order Dcl(s) where n is the order of D*(s).

Here we shall solve for the desired denominator:
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(6.7-5)

I.e. closed loop poles at –2.8± j2.8Hz.and –8 Hz 

Pole Placement Design
4.
Determine the coefficients of the controller polynomials S(s) and R(s) by equating coefficients in the expanded forms of Eq's 6.6-4 and 6.6-5 or other numerical methods.  Assume c2/m = 8 initially.
5.
Calculate the scalar prefilter gain kpf by referring to Figure 6.6-1.  The goal is to have the output y2(s) scaled equal to the input rr(s).  Hint:  Consider the system in static equilibrium.  Set y2 =1 and rr = 1 and solve for kpf using only the constant terms in all control blocks.

Control Implementation
6.
Modify your algorithm from Step 3 above to include the following. 
a)
Implement the outer loop of Figure 6.7-1 incorporating the control terms S(z) and R(z).  You may use a bilinear (Tustin) or backwards difference transformation in converting your design from continuous to discrete.  You should move R(z) into the equivalent forward path location (from its location in both the return path and prefilter) to avoid calculating it twice in the real-time algorithm.
b)
Use cmd1_pos as your reference input.
c) 
As in the previous section, add a provision so that the second reference input, cmd2_pos, is output on the second DAC (control_effort2).  This will be used to apply a disturbance force to the upper magnet. 

Have your laboratory supervisor or instructor review and approve your algorithm before implementing it.

7.
Implement your algorithm and verify that the system is stable.  If so, lightly perturb the upper magnet and verify that the lower one moves in opposition to your disturbance in an attempt to regulate it.  If this occurs congratulations! You have just implemented noncollocated control!  Perform a 15000 count step input and plot the magnet 1 and magnet 2 positions.  
If there is significant overshoot, (>15%) in the y2 position trace, increase the damping c2/m 
 in your model by say 20%, recalculate the coefficients of the outer controller (via Eq. 6.7-4), convert to discrete time form and re-implement.  If this increases the overshoot, then reduce c2/m in your model and re-implement.  Repeat this process if necessary to produce a well-behaved response in the y2 trace.  Notice the shape of the y1 trace as its response compensates for the flexibility between it and the upper magnet. (Bear in mind that our objective here is to control the position of the upper magnet.) Save your final plot.
As in the latter part of Step 4 of Section 6.6, add a disturbance to the upper magnet of magnitude 20000 counts in the downward direction.  Assure that the 20000 count control effort to the upper coil is applied only momentarily.  Plot the result and note the relative effect of the disturbance on each magnet.  Save your plot.  Note the change in both the step response and disturbance attenuation at the upper magnet as compared with the previous collocated design.

Questions:
A.
Report your calculated values for s0, s1 , r0, r1, and kpf.  Submit your real-time algorithm
B.
Determine an expression for the closed-loop transfer function y2(s)/rr(s) including all elements in the block diagram of Figure 6.6-1.  You may express this in terms of the polynomials D(s), N1(s), R(s), etc. rather than expanding each term fully.  Determine y2(s)/rr(s) using the assumption C(s)=1.  Compare the simulated frequency response of the full and reduced order transfer functions.  In which regions are the two similar in magnitude and phase and in which are they different?  Are they similar throughout the final system closed loop bandwidth?  Is the assumption of unity gain in C(s) valid for the purposes here?
C.
Determine the phase and gain margins for the outer loop considering the full expression for the closed inner loop C(s) (i.e. consider C(s) to be a single block in the outer loop block diagram).  Determine the phase and gain margins of the outer loop using the C(s) = 1 assumption.  How do the two compare?

D.
For this design, determine the static stiffness at y and y2 for Fd1 and Fd2 applied at y1 and y2 respectively (i.e. Fd1/y and Fd2/y2).  What are the “cross” static stiffnesses (i.e. Fd2/y and Fd1/y2)?  How do the relative stiffness of the upper and lower magnet  compare in each case?

6.8
MIMO Control 
In this experiment, full MIMO control is implemented on the two magnet system.  The physical plant configuration is again that of the previous two sections except that now we apply inputs at both the upper and lower magnet locations.  We shall implement a linear quadratic regulator using full state feedback where the states are defined to be the position and velocity of each magnet (i.e. those of Eq.(5.3-15)).  The outputs are taken as y and y2 i.e. the output matrix is
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(6.7-1)

Here we employ the sensor and actuator nonlinearity compensation of the previous sections.  The plant model was previously generated in Section 6.1.  Recall that the underlying assumption in this model is that the sensor and actuator nonlinearity compensation functions are sufficiently near the inverse of the underlying plant nonlinearities that the new “plant” may be modeled as being linear for control design purposes.  Recall also that there is no nonlinear compensation for the effective “spring” k12’.  It is modeled as a linear spring whose value was derived by linearization about the operating point {y,y}.
In the experiment that follows, we shall first implement SISO controllers (from previous sections) for the upper and lower magnets simultaneously and compare the resulting system performance with that of the MIMO design.  Block diagram depictions of the full state feedback multivariable system is shown in Figure 6.8-1.
LQR Design:

1.
Construct a state space model of the plant using the realization form of Eq (5.3-15) for the plant with nonlinear sensor and actuator compensation.  Be sure to include the system gain, ksys, in your model. (You may have already generated this model as an exercise in Section 6.1)
2.
The following notation shall be used for LQ optimization:


Feedback law:
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(6.7-2)


where
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(6.7-3)


Perform LQR synthesis via the Riccati equation solution
 or numerical synthesis algorithms to find the controller K which minimizes the cost function:
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(6.7-4)


In this synthesis choose Q=C'C so that the error at the intended outputs, y and y2, is minimized subject to the control effort cost R.  Because of symmetry of the system choose R=rI where I is the 2x2 identity matrix and r is scalar.  Perform synthesis for control effort weight values: r = 10, 1.0, 0.1, and 0.01.  Calculate the closed loop poles for each case as the eigenvalues of [A–BK]

3)
From this data, select a control effort weight to put the lowest pole frequency between 5.75 and 6.25 Hz.  Use one of the above obtained K values if it meets this criteria, or interpolate between the appropriate r values and perform one last synthesis iteration..
  
4)
Generate a real-time routine that implements the above LQR design and includes the following. 

a)
Nominal operating points y and y2o at 1.0 and –2.0 cm respectively.

b)
Sample period T=0.001768 s.
c)
For tracking, the prefilter gain kpf1 must be set equal to k11 +k13 and kpf2 set equal to k21 +k23..

Control Implementation
Simultaneous SISO
5)
Consider the simultaneous implementation of the two PD controllers with sensor and actuator nonlinearity compensation from Section 6.3.  This identical configuration was used in Section 6.5 to control the upper magnet and thereby impart a disturbance to the lower one for the study of disturbance rejection.  Modify this routine as follows:

a)
Set the nominal operating points to y = 1.0 cm and y2o = –2.0 cm.  
b)
Adjust the gravity offset parameters u and u2o to account for the constant force due to k12 imposed on each magnet at the nominal separation distance y12o. 
c)
Calculate and enter control gains such that n = 6 Hz and =0.707 for each sensor/actuator/magnet system.
d)
Use cmd1_pos for the lower magnet reference input and cmd2_pos for the upper.
e)
Set the variables q10 =y* and q12 = y* for later data collection and plotting.
Have your laboratory supervisor or instructor review your algorithm before proceeding.
6)
Use the plastic safety clip so that the magnet rests at approximately –2.5 cm.  Implement this routine and if the controller is stable and functioning properly (e.g. the magnets are levitating at roughly their proper heights) remove the plastic clip.  Setup the following multivariable input:  Trajectory 1: Step input,  15000 count amplitude, 1000 ms dwell, 4 repetitions, unidirectional; Trajectory 2: Step input,  15000 count amplitude, 1000 ms dwell, 4 repetitions, bidirectional (deselect unidirectional).  

Execute these two trajectories with a 500 ms delay of Trajectory 1 after Trajectory 2.  Notice the response of the magnets and the cross coupling between them (e.g. how much the stationary magnet moves as the moving one changes position).  Plot your commanded position and y* (i=1,2) data for each axis.  (You may want to use the Axis Scaling function so that the upper magnet commanded and output positions are shown above those of the lower one on the plot.)  Notice the cross coupling in the output and in which magnet positions it is most pronounced.
Full State Feedback MIMO
7)
Repeat Step 6 for the LQR based controller of Step 4.  Check that the system is providing stable regulation of each magnet.  If so congratulations! You have successfully implemented multivariable control!   How does the cross-coupling compare with that of the independent SISO controllers?  You may wish to input other trajectories such as impulses or ramps and view/plot the system response.  Do not input amplitudes greater than 15000.  Also, note that a bidirectional trajectory >10000 for the lower magnet will cause it to hit the mechanical stop in the negative direction and should not be executed. 

Questions / Exercises:
A.
Report your calculated values of the closed loop poles for the various values of r in Step 2 and for your final design.  Report the values of K, for your final design.
B.
Describe the motion of the two magnets under independent SISO controllers from your step series response in terms of their relative interference when the two magnets are closest together and when they are furthest apart.  Compare the response to the same series from the multi-variable LQRT based design.  Which has the greater cross coupling?  Can you see the nonlinear effect of the spring in the outputs?  Explain.







































































































































































































































� This characteristic is measured experimentally in Chapter 6.


� The actuator curve shown is fourth order.  It depicts the coil current required to generate 1 N of force at a given magnet distance.  The corresponding force term Fu11 is the inverse of this relationship.  The magnet-to-magnet data is shown fitted with an inverse fourth power curve which directly corresponds with the term Fm12.


� The “raw” output is net of the laser thermal compensation done in the background (transparent to the user) unless “Apply Thermal Compensation” is not checked in the Setup Sensor Calibration dialog box.  It is recommended that thermal compensation be applied in all cases.  If thermal compensation is not applied, the coefficients e, f, g, and h in Eq. (5.4-1) should be evaluated with the thermal compensation turned off and at the anticipated steady state operating temperature of the coil/sensor block(s).


� These counts are converted to a voltage via a digital-to-analog converter (DAC), then to a current via the servo amplifier, to a magnetic field via the coil, and finally to a force by repulsion of the magnet’s fixed magnetic field.  The scaling of all of these transformations all affect the system gain and will be examined in more detail in Section TBDthe sections that follow.  See also Chapter 4 for a description of the control hardware and software functionality.


� These counts are converted to a voltage via a digital-to-analog converter (DAC), then to a current via the servo amplifier, to a magnetic field via the coil, and finally to a force by repulsion of the magnet’s fixed magnetic field.  The scaling of these transformations all affect the system gain and will be examined in more detail in Section TBD.  See also Chapter 4 for a description of the control hardware and software functionality.


� The inverse and inverse square terms in Eq. 6.1-1 are physically motivated by the inverse and inverse square relationships obtained by optical analysis of the fan-beam laser light scattered and reflected off the diffuse white surface of the magnet and incident in the detector (see Section 4.5).  The constant and linear terms give additional degrees of freedom in the curve fitting to accommodate the various affects of masking of the reflected light from the detector at close magnet distances and other non-nominal optical geometric and surface reflectance factors. 


� The fourth power form is used because it is shown to yield a sufficiently close approximation of the empirical data (the student should verify this) and is less computationally intensive to implement in real-time processing than non-integer forms.


� In subsequent experiments we shall enter the calibration coefficients via the Setup Sensor Calibration when the calibrated sensor option is selected.  The global variable sensor1_pos then becomes the calibrated/linearized sensor data.


� The description of gain applies to a rectilinear translating lumped inertia type plant with position feedback.


� The measurements of sensor and actuator characteristic contain the gains of the various system components such as the sensor analog output, the ADC, the DAC, the servo amplifier, and the coil-magnet force field.  They also of course contain the gains specified for scaling.


�You may “zoom” the plot via Axis Scaling for more precise measurement in various areas.  For an even greater precision, the data may be examined in tabular numerical form – see Export Raw Data, Section 2.1.7.3.


�Steps 11 and 12 may be done later, away from the laboratory, if necessary.


�In plant configurations where a disk is used in the center location, the inertia and damping parameters may be assumed to be the same as for the upper disk.  


� Some small deceleration will exist due to friction.


�For more precise measurement you may "zoom in" on this region of the plot using Axis Scaling in the Plotting menu.


� It is possible to read the accelerations directly by plotting Encoder #1 acceleration.  This data, obtained by double numerical differentiation, is typically somewhat noisy however.  The student may want to verify this by observing the acceleration plot


�It contains software gain also.  This software gain, ks is used to give higher controller-internal numerical resolution and improves encoder pulse period measurement for very low rate estimates.


�The “controller counts” are the counts that are actually operated on in the control algorithm.  i.e. The system input (trajectory) counts and encoder counts are multiplied by 32 prior to control law execution.


� The controller incorporates the derivative action kds in the return path rather than using the forward path PD form: C(s) = kp + kds.  This is to more clearly demonstrate certain fundamental properties of this class of control systems in this and subsequent experiments.  The characteristic equation and hence stability of the two system forms is identical, but their responses to dynamic inputs is different.


� You may have to modify your real-time algorithm by multiplying cmd1_pos by a constant to provide sufficient amplitude.  It should not be necessary to use a constant greater then 4.  Make sure that you properly compensate for this factor in specifying the step amplitude via the Trajectory dialog box.  (The trajectory input amplitude is limited in software to impede inadvertent over-driving of the system.  With the present control scheme however the output is substantially less than the reference input due to the relatively low net gains.)


� You may consider the magnet to have fallen away from the controllable range even if it returns under control on the final leg of the trajectory.  It would have fallen completely away if not for the safety clip.


� For <1 there is overshoot and are oscillations during settling that increase with decreased .  For >1 the response becomes more heavily damped with no overshoot.  You may not always see overshoot in the in the nominal design case of =0.5 for the present controller due to the effects of friction and the relatively low gains used.


�The student may want to later verify that for the relatively high amount of control damping in the scheme that follows – induced via the parameter kd – that the plant damping is very small.


�Here due to friction the system, which is ideally quasi-stable (characteristic roots on the j axis), remains stable for small kp.  For larger values, the time delay associated with sampling may cause instability. 


�E.g. a large error at the time of implementation.


�For the discrete implementation you must divide the resulting value by Ts for the controller input value  Here, since the PD controller is improper, the backwards difference transformation:  s = (1-z-1)/Ts  is used.


�Recall that for discrete implementation, you must divide the kd values by Ts for controller input. 


�For discrete implementation you must multiply the resulting value of ki by Ts before inputting into the controller.


�For discrete implementation, do not input ki>0.4* Ts. 


� For the purposes here, consider bandwidth to be the frequency in the sine sweep data at which the system attenuates below 1/2 (-6Db) of its low frequency amplitude


� In practice, friction and its effect on system response are much more complex.  This assumption however is valid in discussing the effect of the integrating term.


�The student may want to later verify that for the relatively high amount of control damping in the scheme that follows – induced via the parameter kd – that the plant damping is very small.


� These controllers are used to implement lightly damped systems for physical measurement of natural frequency.  The very low damping ratio for the 4 Hz system is to provide an oscillatory response in spite of the effect of magnet/glass rod friction which becomes exaggerated in this low gain case.


� This greater height is necessary to assure that the magnet does not striker the mechanical stop during the frequency response tests.  You may need to reduce the amplitude slightly in the underdamped system sine sweep if it contacts the stops during resonance.


� You may need to reduce the amplitude slightly in the underdamped system sine sweep if it contacts the stops during resonance


� For the purposes here, consider bandwidth to be the frequency in the sine sweep data at which the system attenuates below 1/2 (-6Db) of its low frequency amplitude


� In practice, friction and its effect on system response are much more complex.  This assumption however is valid in discussing the effect of the integrating term.


� It is recommended that you merge the appropriate portions of the upper magnet controller from Section 6.3 and the lower magnet PID controller form the previous section – then modify the result to add the lead/lag filter.


� Here the lower magnet gravity offset must be increased by the intermagnet force at the nominal separation distance.  The upper magnet offset is reduced by this amount.  You should be prepared to explain this and to show that these values are consistent with the intermagnet force relationship derived in Section 6.1.


� You should verify that these result in n = 8 Hz, =0.5 for the upper system.  This provides a relatively “stiff”, high bandwidth control so that the magnet follows the desired trajectory closely.  This provides for a well-controlled disturbance force as seen by the lower magnet for the frequencies tested.


� There may be multiple sensors used including ones that are both collocated and noncollocated relative to the actuator.  If the location of objective control is not collocated with the actuator, then the plant is typically referred to as being noncollocated.


� An oscillatory response may also result from excessively high gain in both kp and kd due to low gain margin (in the real, not idealized, system).  In this case you should reduce both gains.


�For discrete time design, convert your notch filter design to the z domain using the Tustin (bilinear) transformation: 


�


�r(s) will be the same as Dn(s) and s(s) & t(s) will be identical and equal to kpNn(s).  Upon selecting Preview In General Form the algorithm is also converted to discrete time form (by the Tustin transform for Nn and Dn, backwards difference for any derivative terms).  In this way the discrete time equivalent controller may be viewed in the discrete time General Form controller box.


� This small value is needed to provide a proper transfer function for bilinear transformation and subsequent discrete control implementation whenever T/R and S/R are used to implement a differentiator.  Its small value results in a pole many decades beyond the system bandwidth and is of no practical implication to system modeling or performance.  This coefficient may be set to zero here, but should generally remain.


� Friction at the upper magnet (modeled as viscous) is included here because the actuation force acting on this magnet must pass through k12’ – a rather weak “spring”.  Thus the friction effects present a non-negligible portion of the force acting on the magnet.  In cases where the upper coil drives the upper magnet (e.g. the MIMO control of the next section) the control forces can be made strong such that friction may be neglected.


�The notation here is the obvious one.


� This has two poles of magnitude |s| = 2.54 Hz that lie at 135, 180, and 225 deg and an additional real pole at –8 Hz. It is similar to a third order Butterworth polynomial but somewhat more damped.


�You may also select Control Effort if you wish to later observe this value .


� The damping will vary from one apparatus to the next and is also dependant on the cleanliness and condition of the glass rod and magnet bushing surfaces.  A damping mismatch between the model and the actual system can result in excessive overshoot if the model damping is either too high or too low.


�See for example Kwakernaak and Sivan, "Linear Optimal Control Systems", Wiley & Sons, 1972.


�K1 ki1 and ki3K3 (i=1,2) scale control effort proportional to the respective position errors, ki2K2 and ki4K4 scale control effort proportional to the respective velocities.  Excessive values of K1 or K3  can lead to low stability margin and in the presence of time delays, instability.  Large K2 or K4 cause excessive noise propagation and lead to "twitching" of the system. -  see Section 6.8 Generally, it is desirable to obtain the highest performance possible (e.g. best tracking, regulation, and disturbance rejection) through high gain subject to the above gain limitations.  For the present system, gains that provide approximately 6 Hz closed loop bandwidth represent a reasonable trade between performance and noise and stability.


�If using discrete time implementation, be sure to divide your K2 and K4  values by Ts before entering them.  


� This yields the margins as if the additional phase lag or gain were to occur in the control input (i.e. khw block), or uniformly among the outputs.  This is not necessarily the case in practice, but does provide a general measure of stability margin.


�In either case, the DAC is generally programmed to saturate below or at its full scale output.  Without programmed saturation the DAC, which typically accepts two's-complement input numbers, would output full scale voltage of reverse polarity upon exceeding its input range.  This would clearly be problematic!


� The natural frequency and damping ratio will vary depending on the particular system’s khw.


�The DSP controller and imbedded control firmware provide very high data and parameter resolution including a 16 bit DAC, and 48 bit multiplication with 96 bit products.  These combined with internal data scaling for numerical conditioning make this system immune to many quantization related problems.


� For the units used in this manual, the resolution is the angular size in radians per encoder pulse, i.e. 2/16,000 for the encoders on the Model 205 apparatus.


�Eq.(6.8-5) should not be viewed as a predictor of noise onset.  Many other effects such as system bandwidth, mechanical flexibility, and nonlinear behavior all influence noise propagation and generally have a different effect at different sampling frequency.  For a given system and controller, however, high frequency torque (or control effort) quantization is often a dominant factor in noise propagation. 


�Or more generally with increased high bandwidth gain.


�Eq A.1-31 is over-determined in that two equations exist for one unknown.  Another solution is � which yields identical � values for solutions � to Eq A.1-32 (or -35).


�See for example "Elements Of Vibration Analysis", L. M. Mierovitch, McGraw-Hill Book Co., 1975; or "Principles Of Dynamics", D. T. Greenwood, Prentice-Hall Inc., 1965. 


�It is important to keep in mind the difference between the physical system and mathematical approximations of its behavior.  Virtually no physical system follows a mathematical model exactly.  In some cases even the dominant dynamic behavior evades mathematical description.  It is very often possible, however to model the system sufficiently well for control purposes.  The system here is relatively amenable to modeling with the ideal linear behavior dominating the plant dynamics.  The generation of a plant model that is of minimal complexity but which represents the salient plant dynamics through the ensuing control bandwidth is central to effective control implementation.


�Motor cogging produces the torque "bumps" felt when rotating the motor under a zero torque command (amplifier active) and is associated with brushless motor phasing and rotor magnet / stator field interaction.  While this is not a true sinusoid, it may be approximated by kcsin(n1+) where n is equal to the drive pulley diameter ratio times the number of motor poles, i.e. n = 2x3 for Model 205/205a.


�This damping has a different form than that expressed in Eq's(A.2-6,-7) and in general is not literally representative of physical damping sources in the system.  In order for viscous damping to exist and the modes to remain uncoupled, there must be an associated � coefficient matrix C (Eq.(A.1-3))which is proportional to either J or k - this is called proportional damping.  


Thus damping will generally couple the modes to some extent so that an unforced system, initially experiencing single mode motion, will exhibit motion of the other mode(s) in time.  With large influence of non proportional damping, the modal motion concept is wholly invalid.  For small values of j however, Eq.(A.2-10) is a useful approximation where the damping may be "visualized" as causing a decay of modal amplitude in the unforced plant.
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