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6i. Instructor's Supplement To Experiments
This is the instructor's supplement to the experiments described in Chapter 6 of the main manual.  It contains the expected experimental results and solutions to exercises as well as additional optional experiments and exercises.

This supplement is organized with section numbers consistent with those of the seven experiments in the main manual body.  In addition to describing experimental results, Section 6.1i contains numerical models of three plant configurations.  Appendix Ai lists MATLAB® scripts and real time routines that are provided with the system and are useful in building numerical plant models and performing the experiments.

On The Nature & Scope of Experiments
The experiments are designed to provide sufficient detail that the students may, for the most part, follow the instructions without undue burden in laboratory supervision.  Such supervision is of course required however.  Also, the material may not be presented precisely in a manner consistent with the desired content or time constraints of a particular course.  It is therefore important that the instructor read ahead of each lesson to tailor the content if necessary.  In particular, some preparation and homework on the part of students in advance of the experiments will significantly reduce the time required in the laboratory.  

There are many control systems topics that relate to this system and these experiments which are not explored in the manual, but which the instructor may wish to bring out.  The methodologies presented here demonstrate some fundamental principles and behaviors, but are not represented to be necessarily superlative practical control solutions.  They do in the least however, give the undergraduate student a hands-on introduction to control implementation.  The more advanced user is provided a working orientation to the system from which more general topics may be explored.  

Note to instructors and advanced users:
If you or your students synthesize and implement a control structure that is of particular academic or instructional interest, please share it with us!  Pending ECP review and your approval, it may be included in a future revision of this manual with credits of course to the inventor.  For all earnest submittals, you will receive a complementary software and manual upgrade!

6.1i
System Identification

The procedure given is for verifying the nonlinear forms of the magnetic fields and identifying the raw sensor characteristic.  The resulting models of these nonlinear effects are used in control analysis and for real-time compensation of the nonlinearities.  The latter part of this section demonstrates the effectiveness of the nonlinear compensation
 and shows how these can be used to reduce the control design to that of a simple rigid body plant.  A quick procedure for generating the nonlinear characteristics and plant models is given at the end of this chapter.
Expected Experimental Results:

1.
In 6.1.1:  Representative data of the sensor characterization tests are shown in Table 6.1-1i.  These may vary by as much as 10% from system to system for a given position.  

Table 6.1-1.   Representative Sensor Calibration / Linearization Data

Magnet Position For Sensor #1 (cm)
Y1raw   (Sensor 1, counts)
Magnet Position For Sensor #2 (cm)
Y2raw (Sensor 2, counts)

0.00
30,000
0.00
29,900

0.50
25,700
-0.50
26,300

1.00
21,600
-1.00
22,100

2.00
14,900
-2.00
15,300

3.00
10,400
-3.00
10,600

4.00
7400
-4.00
7600

5.00
5300
-5.00
5450

6.00
3750
-6.00
3920

2.
In 6.1.2:  Representative data of the actuator characterization tests are shown in Table 6.1-2i.  These may vary by as much as 5% from system to system; this is largely due to differences in the servo amplifier gains.  For most control design purposes, the upper and lower actuator characteristics may be assumed to be identical.  There will be some differences due to amplifier gain, but the nonlinear characteristic is primarily due to the shape of the magnetic field which does not vary appreciably.  If precise characterization of the upper actuator input/output characteristic is needed, the unit may be inverted and the described procedure repeated.  (This must of course be done in such a way to protect and not damage the apparatus – e.g. support the baseplate by blocks at its corners that are taller than the vertical column of the apparatus.)

Table 6.1-2I.  Representative Actuator Calibration / Linearization Data

Magnet Position (cm)
u1raw   (Uncompensated Control Effort, counts)

0.00
3050

0.49
4000

0.88
5000

1.22
6000

1.83
8000

2.28
10000

2.69
12000

3.03
14000

3.60
18000

4.05
22000

3.
In 6.1.3:  The simple real-time algorithm for putting control effort values on the DAC is

begin

control_effort1=5000

end
Representative data of the magnet-to-magnet force characteristic is shown in Table 6.1-1i.  This data is provided to the students and is repeated here for convenience.  

Table 6.1-3i.   Magnet-to-magnet Force Interaction Data

Weight at Magnet #2 (fm12, N)
Magnet #2 Position Relative to  Magnet #1 At Equilibrium (y12, cm)

0.402
11.73

0.612
10.30

0.735
9.57

0.998
8.80

1.190
8.09

2.171
6.72

3.152
5.90

4.133
4.78

6.095
4.25

11.00
2.74

4.
In 6.1.4:  The mass of the magnet should be 120 ± 4 g.  The corresponding weight is 1.18 ± 0.04 N.  

Questions / Exercises
A.
The curve fitting may be done by iteration starting with the inverse term with the inverse square root term equal to zero and adjusting the bias and slope (coefficients c and d) for a best fit.  The inverse square root term may be strengthened and again the bias and slope adjusted.  By iterating with adjustments of a and b while setting the best slope and bias in each case, a close fit can be found within roughly 10 to 15 passes.  


A more rigorous and efficient method however is to use regression-based curve fitting of the function y*1cal which is linear in the coefficients.  A Matlab™ script for this is given in Appendix Ai and yields for the values of Table 6.1-1i :


Sensor #1:
e* = -10720

f* = 692

g* = -2.27

h* = -0.0000448


Sensor #2
e* = 5600

f* = -555

g* = 1.195

h* = 0.0000595


Note that the sign of the coefficients is reversed for sensor #2 v. #1.  A comparison of the test data and the correction function is shown in Figure 6.1-1 where the discrete data points are shown as circles and the fitted function is a continuous line.  The above yield y*1cal in units of 1 count per cm.  When scaled in units of 10,000 counts per cm, these become


Sensor #1:
e = -107200000

f = 6920000

g = -22700

h = -0.448


Sensor #2
e = 56000000

f = -5550000

g = 11950

h = 0.595

B.
Again the curve fitting for the actuator correction can be found by “manual iteration”, but is more efficiently derived with the help of linear regression.  Here several trials of the parameter b must be made while the algorithm solves for a in each case.  The Matlab™ script for this is again given in Appendix Ai and yields the following using the data of Table 6.1-2i. 




a = 1.65

b = 6.2


The data and fitted curve are shown in Figure 6.1-2i.  The closeness of the fitted curve appears to justify the use of the fourth power approximation of the magnetic force term in Eq. (5.2-3).  (The differences between the data points and the fitted curve are generally less than 1% of full scale which corresponds to a relatively minor nonlinearity in the net control effort.  Other nonlinearities such as friction and those in the servo amplifier itself are typically of greater magnitude).


The units of the denominator in the right hand side of Eq.(6.1-3) are DAC counts per Newton.  In order for Ku1 Fu1 to have units of N/10,000, a must be divided by 10,000; i.e.




ac = 0.000165

bc = 6.2


The characteristic for the upper actuator (#2) is the same as that of the lower one except the sign of b is reversed.

C.
The Matlab™ script for fitting the intermagnet force data is again given in Appendix Ai and yields the following using the data of Table 6.1-3i. 




c = 2.69

d = 4.2


The data and fitted curve are shown in Figure 6.1-3i.  The closeness of the fitted curve appears to justify the use of the fourth power approximation of the magnetic force term in Eq. (5.1-7). 

D.
The weight of the magnet should be reported to be 1.18 ± 0.04 N.  The values of magnet separation for weights less than this were obtained by tilting the apparatus so that the glass rod is oriented at various angles from the vertical.  The force is the projection of the magnet weight onto the direction of the glass rod and the separation distance is measured as before.  The data for weight = 0.612 N for example was taken with the glass rod nearly 60 degrees from vertical.  (This procedure is facilitated by spinning the magnet to release the bushing/rod friction at high tilt angles)


The weight at magnet two is equal to the repulsive force at equilibrium.
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a) Sensor #1
[image: image2.wmf]
b) Sensor #2

Figure 6.1-1i.  Curve Fit for Sensor Calibration / Compensation
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a) Actuator #1
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b) Actuator #2

Figure 6.1-2i.  Curve Fit for Actuator Calibration / Compensation
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Figure 6.1-3i.  Curve Fit of Intermagnet Repulsion Characteristic

5.
In 6.1.5: The real-time algorithm for sensor nonlinearity correction should be consistent with the following recommended one where the coefficients of y1cal are those given above.

;*********Declare variables**********

#define y1cal q5

#define y1raw q6

;*************Initialize*************

y1cal = 0

control_effort1=0

control_effort2=0

;******Begin Real-time Algorithm*****

begin

y1raw=sensor1_pos; Choose "Use Raw Sensor Data" in Setup Sensor Calibration dialog box

y1cal=-107200000/sensor1_pos+6920000/sqrt(sensor1_pos)-22700-0.448*sensor1_pos

q10=y1cal

q11=y1raw

end

Important Note:  There may be slight differences between the version of any real-time routine shown in this manual and those on the diskette furnished with the system.  The diskette contains the latest version of these routines and should be used for actual implementation.
The algorithm for constant force (position independent) should be consistent with the following:

;*********Declare variables**********

#define y1cal q4

#define y1raw q5

#define magwt q6

#define gravityoffset q7

#define uterm1 q8

#define uterm2 q9

;*************Initialize*************

control_effort1=0

control_effort2=0

magwt=11800 ;Newtons

gravityoffset=magwt/1 ;One half the magnet weight

;******Begin Real-time Algorithm*****

begin

y1raw=sensor1_pos; Select "Use Raw Sensor Counts" in Setup Sensor Calibration dialog box

y1cal=-107200000/y1raw+6920000/sqrt(y1raw)-22700-0.448*y1raw

uterm1=6.2+y1cal/10000

uterm2=uterm1*uterm1

control_effort1=0.000165*uterm2*uterm2*gravityoffset

end

Important Note:  Students should understand the need for induced drive saturation in the real-time processing.  The two’s complement DAC will abruptly change output polarity at full amplitude once it’s range (215=32768) has been exceeded.  This is obviously an undesirable condition that could lead to a large amplitude limit cycle and equipment damage. To avoid this, a saturation routine is always included in the ECP firmware to so that its amplitude saturates at full scale. Such a routine should be implemented whenever the user provides his/her own control processing resources (e.g. the system was purchased in the “Plant Only” form). The saturation routine has the following logic.  This code may be implemented within the real-time routine if, for example, the user desires to reduce the saturation limits.

if (u1>30000)

u1=30000

endif

if (u1<-30000)

u1=-30000

endif

control_effort1=u1

Here u1 is the output of the control algorithm and control_effort1 is (as always) the number put on DAC #1.

Questions / Exercises
E.
The plot of the raw and linearized sensor outputs is shown in Figure 6.1-4i.  The raw signal is highly nonlinear with much greater change in output with position (i.e. gain) near zero position (approximately 30,000 counts) than at 6 cm.  Its value decreases with increasing position.  The linearized sensor data shows equal change of output with actual position through the range tested and increases with increased position.  Some errors in the plot will result from the manual operation of positioning the magnet at the incremental (1 cm.) positions.

F.
The student should feel an approximately constant force during the trials. In the trial with the force specified as one magnet weight the magnet should (of course) feel approximately weightless.  Some variations in force will occur due to errors in the curve fit and friction and servo amplifier nonlinearities.

G.
The expanded closed loop block diagram including nonlinearity and gravity feedforward compensation is shown in Figure 6.1-5i.  The elements to be implemented in the real time algorithm are shown in bold outline.  The nonlinearity compensation and gravity feedforward algorithms are static (i.e. are constant or depend only on the position, [e.g. not velocity or acceleration] of the system).  The subscript “c” in (mg)c denotes the magnet weight in controller output units (N/10000).  For a magnet in the upper position with positive displacement of y2 being upward, the block diagram as shown would be identical except of course that the subscripts indicating location 1 v. 2 would be changed.  The polarities of the magnet and coil are assigned so that positive control effort results in a repulsive force in the lower actuator and an attractive one in the upper.   The underlying plants are qualitatively different in that the lower one is open loop stable and the upper is unstable.  That they appear identical in the closed loop diagram is due to the control effort nonlinearity compensation which approximately negates the magnetic field force/position characteristic (the source of the instability in the upper plant).  The inherent stability / instability of these systems is addressed in the next section. 

H.
The equivalent simplified block diagram is shown in Figure 6.1-6i which includes the values of the gains ks and ku.  The system gain, ksys, is the product ksku and has the value of 100 N/m.  When the control effort nonlinearity is not compensated, the actuator gain is 
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      (N / count)
(6.1-1i) 

where the counts  are counts on the DAC.  The sensor gain is the change in raw sensor counts with position.  I.e. it is the inverse of the right hand side of Eq.(5.4-5) 



 [image: image7.wmf]    i= 1,2  (sensor counts/m)
(6.1-2i) 

where the counts are counts on the ADC and the factor of 100 is needed for length units of meters.  The above gains are dependent on position.  The actuator gain decreases with the inverse fourth power of position, and the sensor gain magnitude decreases with position (it increase in magnitude with y1raw).  Thus the system will display relatively high gain for small coil/magnet separation and much lower gain when the separation is large.

I.
The numerical plant models are given below.  These are easily generated using the Matlab™ script SISOplant.m whose routines follow directly from the equations of Chapter 5.  In solving for case 1 in the exercise, the raw sensor output, y1raw, at y1o =2.0 cm is needed – similarly for the upper output.  These may be found by solving Eq.(5.4-1) numerically or by reading off the plots of Figure 6.1-1i.  For the specific parameters given in this section, the raw outputs are y1rawo=15000 counts, y2rawo = 15400 counts for y1o =2.0 cm and y2o =-2.0 cm respectively.  A model of the MIMO system with the upper magnet polarity reversed may also be constructed by changing the sign of .  It results in an unstable pole and generally requires higher gain to stabilize the system.

J.
The numerical multi-variable plant models are also given below.  These are easily generated using the Matlab™ script MIMOplant.m.  The state space forms derive directly from the equations of Chapter 5.  The transfer matrix expressions require solving the appropriate equation of motion pairs (e.g. Eq’s 5.3-4, -5) to isolate the independent variables and solve for the characteristic denominator. 
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Figure 6.1-4i.  Typical Plot From Sensor Compensation Verification Test

[image: image9.wmf]
Figure 6.1-5i.   Block Diagram of Closed Loop System Including Nonlinear and Gravity Compensation Elements 
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Figure 6.1-6i.   Equivalent Block Diagram Assuming Effective Nonlinear and Gravity Compensation 

Note to Instructor:  Exercises I&J do not need to be completed in their entirety to complete the experiments of this manual.  In this manual, only plant types listed under 1a, 1b, 3a, 3b, and 6 below are used.  (All are quickly generated using SISOplant.m and MIMOplant.m) The exercises may of course be reduced in scope at the discretion of the instructor.  – It’s a lot of homework!
Numerical Plant Models:

The following numerical plant models are consistent with the parameters of a particular apparatus as given elsewhere in this chapter.  They are nominally representative of any Model 730 system.  For more accurate modeling, the specific parameters of a given system should be measured as per the instructions given in the student’s section or using the “Quick Steps” below.  The expressions below were generated using the Matlab™ scripts SISOplant.m and MIMOplant.m given in Appendix Ai.

1a)
SISO, Location #1, Nonlinear Actuator & Sensor, Plant Linearized About y1 = 2.0 cm.
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(6.1-3i)
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(6.1-4i)
2a) SISO, Loc. #1, Nonlin. Actuator, Linearized Sensor, Plant Linearized About y1 = 2.0 cm.
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(6.1-5i)
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(6.1-6i)
3a) SISO, Location #1, Linearized Actuator, Linearized Sensor
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(6.1-7i)
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(6.1-8i)
1b)
SISO, Location #2, Nonlinear Actuator & Sensor, Plant Linearized About y2 =-2.0 cm.
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(6.1-9i)
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(6.1-10i)
2b) SISO, Loc. #2, Nonlin. Actuator, Linearized Sensor, Plant Linearized About y2 =-2.0 cm.

[image: image19.wmf]
(6.1-12i)
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(6.1-13i)
3b) SISO, Location #2, Linearized Actuator, Linearized Sensor
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(6.1-14i)


[image: image22.wmf]
(6.1-15i)
4) MIMO, Nonlinear Actuators & Sensors, Plant Linearized About y1 =1.0 cm, y2 =-2.0 cm.


[image: image23.wmf]
(6.1-16i)
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(6.1-17i)
5) MIMO, Nonlinear Actuator & Lin. Sensors, Plant Linearized About y1 =1.0,y2 =-2.0 cm.
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(6.1-18i)
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(6.1-19i)
6) MIMO, Linear Actuators & Sensors, k12 Linearized About y1 =2.0 cm, y2 =-2.0 cm.
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(6.1-20i)
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(6.1-21i)
Instructors & Advanced Users:  Quick Steps For Developing the Plant Models

1)
Perform the sensor and actuator characterization tests as described in the student’s section 6.1.1 and 6.1.2

2)
Run the scripts: Sensorcal.m, Actuatorcal.m, and Magnet2Magnetcal.m to establish the parameters of the nonlinear characteristics.
  

3)
Run the script SISOplant.m or MIMOplant.m
4)
To generate calibrated/linearized real-time sensor data enter the sensor calibration coefficients from Sensorcal.m in Setup Sensor Calibration (Setup menu)


This section covered:
1.
Characterization of the nonlinear sensor characteristic and development of a linearizing / calibrating algorithm.

2.
Characterization of the nonlinear actuator characteristic (largely due to the magnetic field properties) and development of a linearizing / calibrating algorithm.

3.
Characterization of the intermagnet nonlinearity.

4.
Development of the closed loop system block diagram including that of the nonlinear system, the nonlinear compensated system, and the resulting simplified system (assuming effective nonlinear compensation).  The system gain and gravity compensation approach were also established.

5.
Development of numeric SISO and MIMO plant models for cases of the nonlinear plant being linearized about an operating point and when the nonlinear terms are compensated for in the real-time algorithms.  In the latter case, “plant” refers to the open loop system net of the nonlinear compensation routines. 

6.2i
Nonlinear Plant Control: Linearization About Operating Point

This section demonstrates that the linearized view of the system is valid for small motions about the equilibrium but yields qualitatively asymmetric results for large displacements about the operating point.  For the case of the attractive levitation system, a minimum gain is required to stabilize the system at the equilibrium operating point and large displacements from the equilibrium can result in instability.

Expected Results
:

1)
In Step 1, for the 4 Hz system in the lower (repulsive) position and consistent with the specific plant parameters above:  kp = -0.26, kd = -0.042.   For the 6 Hz system:  kp = -1.6, kd = -0.063.


For the upper (attractive) location at 4 Hz: kp = 1.8, kd = 0.041.   At 6 Hz:  kp = 3.1, kd = 0.062.


These are readily solved for via the script PDdesigner.m
2)
In Step 2, an acceptable real-time algorithm for PD control of the bottom magnet is as follows: 

;Set Ts=0.000884 s

;*********Declare variables**********

#define y1cal q2

#define y1rawo q3

#define kp q4

#define kd q5

#define kdd q6

#define Ts q7

#define y1str q8

#define pos_last q15

#define u1str q16

#define u1o q17

#define u1 q18

;*************Initialize*************

Ts=0.000884 ;for local use only must set Ts in dialog box for sample period

control_effort1=0

control_effort2=0

;Specify Parameters

u1o=8850 ;gravity feedforward 

y1rawo=15000

kp=-0.26

kd=-0.042

;kp=-1.8

;kd=-0.063

kdd=kd/Ts  ;Discrete time derivative term, division by Ts here saves real-time computation

;******Begin Real-time Algorithm*****

begin

y1str=sensor1_pos-y1rawo ;Use raw sensor counts, i.e. sensor1_pos=y1raw

u1str=kp*(cmd1_pos-y1str)-kdd*(y1str-pos_last) ;CONTROL LAW

pos_last=y1str 

u1=u1str+u1o ;Add gravity offset

control_effort1=u1

q10=-y1str ; reverse polarity for plotting (compensates for neg sensor gain)

q11=-cmd1_pos ; reverse polarity for plotting (compensates for neg sensor gain)

end

3)
In Step3, an acceptable real-time algorithm for PD control of the top magnet position is as follows: 

;Set Ts=0.000884 s

;*********Declare variables**********

#define y2rawo q3

#define kp q4

#define kd q5

#define kdd q6

#define Ts q7

#define y2str q8

#define pos_last q15

#define u2str q16

#define u2o q17

#define u2 q18

;*************Initialize*************

Ts=0.000884 ;for local use only must set Ts in dialog box for sample period

control_effort1=0

control_effort2=0

;Specify Parameters

u2o=8400 ;gravity feedforward 

y2rawo=15400

kp=1.8

kd=0.041

;kp=3.1

;kd=0.062

kdd=kd/Ts  ;Discrete time derivative term, division by Ts here saves real-time computation

;******Begin Real-time Algorithm*****

begin

y2str=sensor2_pos-y2rawo ;Use raw sensor counts, i.e. sensor2_pos=y2raw

u2str=kp*(cmd2_pos/3.2-y2str)-kdd*(y2str-pos_last) ;CONTROL LAW

pos_last=y2str 

u2=u2str+u2o ;Add gravity offset

control_effort2=u2

q10=y2str

end

4)
In Steps 7 and 8, the low and high amplitude step responses of the 4 Hz system are shown in Figure 6.2-1ia and 6.2-1ib.  The rough symmetry in the low amplitude and asymmetry in the large amplitude maneuvers is clearly seen.  The input amplitudes for the various low amplitude tests are varied in the instructions to the students to provide roughly equal output amplitudes.  The students should refer to the specific input amplitudes for each test however when considering the steady state errors of the various systems in the exercises.

5)
In Step 9, the low and high amplitude step responses of the 6 Hz system are shown in Figure 6.2-1ic and 6.2-1id.  Again, the rough symmetry in the low amplitude and asymmetry in the large amplitude maneuvers is seen. The large amplitude steady state displacements are more symmetrical than for the 4 Hz system, but the differences in the damping characteristic are present and possibly greater than in the prior case. 

6)
In Steps 10, 11, and 12, the responses for the upper magnet position are shown in Figure 6.2-2i.  The asymmetry of response is greater for the high amplitude maneuvers than for the low amplitude ones and for the 4 Hz system than for the 6 Hz one.  In both the large amplitude plots shown, the magnet nearly fell away before being captured by the control system yielding an irregular trace for the negative step position.


Small Amplitude Displacement
Large Amplitude Displacement
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a) Approximately symmetric response, large steady state error
b) Asymmetric response in amplitude and damping, large steady state error 
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c) More symmetric response and reduced steady state error relative to the above
d) Asymmetric response in amplitude and damping, reduced steady state error relative to the above

Figure 6.2-1i  Typical Experimental Results Show Dependence of Step Response on Gain and Tracking Amplitude – Lower Repulsive System


Small Amplitude Displacement
Large Amplitude Displacement (Impending instability at lower excursion limit)
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a) Approximately symmetric response, large steady state error
b) Asymmetric response in amplitude and damping, large steady state error, small region of stability
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c) More symmetric response and reduced steady state error relative to the above
d) Asymmetric response in amplitude and damping, reduced steady state error and larger region of stability relative to the above

Figure 6.2-2i  Typical Experimental Results Show Dependence of Step Response on Gain and Tracking Amplitude, and Spatial Region of Stability – Attractive Levitation

Answers to Questions
A.
From the denominator of Eq. (6.2-1), the lower repulsive linearized (and nonlinear) plant is stable and the closed loop system is stable for all positive kpksys and kdksys.
B,C.
The polarity of the plotted data is opposite to the physical motion.  This is because the raw sensor signal decreases with increased position of the magnet in the lower system.  The output of the 4 Hz system is roughly symmetrical for positive and negative excursions of low amplitude about the operating point.  For large amplitude, the negative-going response is of much greater amplitude and damping ratio than the positive going one (the actual appearance of the plot will vary from apparatus to apparatus due to the relatively low gain of the controller and unmodeled effects).  These characteristics are explained in terms of the system gain, ksys=ksku which increases dramatically with decreased position of the magnet according to Eq’s (6.1-1i,-2i).  The increased damping ratio with increased ksys (and hence lower position) is shown in Eq. (6.2-4).  The position changes result in much smaller system gain changes for the small amplitude maneuvers than for the large amplitude ones.  From Eq. (6.2-1) the steady-stare error to a constant position reference input of amplitude a is (type 0 system):
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(6.2-1i)


Hence the steady state error is reduced in the 6 Hz system v. the 4 Hz one due to the higher proportional gain and is reduced for both systems at large negative-going amplitude due to the higher system gain.  

D.
From the denominator of Eq. (6.2-2), the upper (attractive) linearized plant is unstable and the closed loop system is stable for all (k2’ negative)




kpksys > -k2’
(6.2-2i)

E,F.
The polarity of the plotted data is the same as the physical motion in the attractive levitation case.  The raw sensor signal increases with increased position of the magnet.  The output of the 4 Hz system is roughly symmetrical for positive and negative excursions of low amplitude about the operating point.  For large amplitude, the negative-going response is of much greater amplitude and reduced damping ratio than the positive going one.  (The effect on damping ratio may be masked by friction in the for the negative-going excursions due to the low effective gain and hence relatively high friction)  These characteristics are due to changes in the system gain, ksys=ksku which increases dramatically with increased position of the magnet according to Eq’s (6.1-1i,-2i).  The increased damping ratio with increased ksys (and hence higher position) is shown in Eq. (6.2-7).  The position changes result in much smaller system gain changes for the small amplitude maneuvers than for the large amplitude ones.  From Eq. (6.2-2) the steady-stare error to a constant position reference input of amplitude a is (type 0 system) for a stable system:
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(6.2-3i)


The error is negative (k2’ negative), which indicates that the steady state value is greater than the reference input (this is one reason why the relative response amplitudes were greater for the upper system than for the lower one).  From Eq. (6.2-3i), the steady state error is reduced in the 6 Hz system v. the 4 Hz one due to the higher proportional gain.  This is one reason why the 6 Hz system maintains attractive levitation of the magnet at a greater negative distance that the 4 Hz one.  Another reason is that the requirement on stability given by Eq. (6.2-2i) is maintained over a larger range.  The steady-state error is reduced for both systems at large positive-going amplitude due to the higher system gain.

Suggested Additional Exercise:  Show that for the full nonlinear plant model, the lower repulsive system is (ideally) stable for all positive kpksys and kdksys and give the conditions on stability for the upper system.

This section showed:
1.
That the lower repulsive system is open loop stable and the upper attractive one is open loop unstable.  The upper system may be stabilized with sufficiently high control gain.

2.
That in both cases, the linearized model / constant control gains yield well-behaved (approximately linear) results for relatively small excursions about the equilibrium operating point but poor, asymmetrical, control characteristics for large excursions.

3.
The nonlinear nature of the system results in instability for the upper system for sufficiently large downward motion.

4.
The region of approximately linear behavior, and the region of stability (upper system) are increased with increased control gain and the steady state error is reduced.  (It should of course be pointed out to students that there is a practical limit to the amount of control gain one may employ due to system stability issues and noise propagation, and drive saturation effects).

6.3i
Control of Nonlinear Compensated SISO Systems

This section demonstrates that the system when compensated for the nonlinear magnetic field (actuator) and sensor yields results that are practically the same as those for a simple second order double integrator (rigid body) plant.  The section that follows this one uses this equivalent system to demonstrate fundamental properties of second order systems.  It may be skipped if the course content is of a more advanced nature. 

Expected Results:

1)
In Step 1, for both the upper and lower system the control gains are: 
kp = 1.72, kd = 0.065.  These are readily solved for via the script PDdesigner.m
1)
In Steps 2 and 3, suitable real-time algorithms for the lower and upper systems are (the lower system routine also contains the integral term used in the next section)

Lower

;Set Ts=0.001768 s


;*********Declare variables**********

#define y1cal q2

#define y1rawo q3

#define kp1 q4

#define kd1 q5

#define kdd1 q6

#define Ts q7

#define y1str q8

#define comp_effort q9

#define pos_last q15

#define u1str q16

#define u1o q17

#define u1 q18

#define laser1 q19

#define y1o q20

#define uterm1 q21

#define uterm2 q22

#define error q23

#define ki1 q24

#define kid1 q25

#define ui q26

#define ui_last q27

#define delta_y1 q28

;*************Initialize*************

Ts=0.001768 ;for local use only must set Ts in dialog box for sampling period

;Specify Parameters

u1o=11800 ;gravity offset in N/10000

y1o=20000

kp1=1.72

kd1=0.065

;ki1=8

ki1=0

kdd1=kd1/Ts  ;Discrete time terms, compute here to save real-time computation

kid1=ki1*Ts

ui_last=0

control_effort2=0

;******Begin Real-time Algorithm

begin

y1str=sensor1_pos-y1o ; Use calibrated sensor, sensor1_pos=y1cal

error=cmd1_pos-y1str

delta_y1=y1str-pos_last

ui=kid1*error+ui_last

;CONTROL LAW

u1str=kp1*error-kdd1*delta_y1+ui 

;OUTPUT

u1=u1str+u1o ;Add gravity offset

uterm1=6.2+sensor1_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort=0.000165*uterm2*uterm2*u1

control_effort1=comp_effort

;UPDATE

pos_last=y1str 

ui_last=ui

q10=y1str

end

Upper

;Set Ts=0.001768 s

;*********Declare variables**********

#define y2cal q2

#define y2rawo q3

#define kp2 q4

#define kd2 q5

#define kdd2 q6

#define Ts q7

#define y2str q8

#define comp_effort q9

#define pos_last q14

#define u2str q15

#define u2o q16

#define u2 q17

#define y2o q18

#define uterm1 q19

#define uterm2 q20

#define error q21

#define delta_y2 q22

;*************Initialize*************

Ts=0.001768 ;for local use only must set Ts in dialog box for sampling period

control_effort1=0

;Specify Parameters

u2o=11900 ;gravity feedforward 

y2o=-20000

kp2=1.72

kd2=0.065

kdd2=kd2/Ts  ;Discrete time derivative term, division by Ts here saves real-time computation

;******Begin Real-time Algorithm*****

begin

y2str=sensor2_pos-y2o ; Use calibrated sensor, sensor2_pos=y2cal

error=cmd2_pos-y2str

delta_y2=y2str-pos_last

;CONTROL LAW

u2str=kp2*error-kdd2*delta_y2

;OUTPUT 

u2=u2str+u2o ;Add gravity offset

uterm1=-6.2+sensor2_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort=0.000165*uterm2*uterm2*u2

control_effort2=comp_effort

;UPDATE

pos_last=y2str

q10=y2str

end

3)
In Steps 7 and 9, typical step response results for the upper and lower systems are shown in Figure 6.3-1i The responses including control effort data are shown in Figure 6.3-2i.

[image: image43.wmf]
a) Lower system

[image: image44.wmf]
b) Upper System

Figure 6.3-2i  Step responses At lower & Upper Locations Show Good Symmetry and Relatively Small Steady State Error

[image: image45.wmf]
a) Lower system

[image: image46.wmf]
b) Upper System

Figure 6.3-2i  Step Responses Show Asymmetric Control Effort Characteristic

Answer to Question
A.
The responses shown are significantly better controlled than those of the previous section.  The responses are essentially symmetric and with relatively small steady state error.  The upper and lower responses are similar.

B.  For the lower system, the change in control effort in going from the nominal to the +15000 position is approximately twice the amount in going from the –15000 position to the nominal. This is because the control routine inverts the nonlinear actuator (magnetic field, inverse fourth power) characteristic to cause the system to behave in a linear fashion.  I.e. it is generating an approximately linear input/output position characteristic at the expense of control effort.  In the upper system the same holds except that the larger control effort is required for negative excursions.  The lower position required three times as much control effort and hence current (I) in the coil for the positive excursion (from nominal) as for the negative one.  The associated power is I2R where R is the coil resistance.  Hence the power dissipation is nearly a factor of 10 greater in the highly levitated state.  This is why it is important not to leave the system in a condition of high levitation of the magnet for sustained periods.

The control effort is much noisier than the position sensor signal because it includes the differentiated sensor signal.  Signal differentiation amplifies high frequency noise.  The system naturally low pass filters much of this noise.  The noise is greater at the distant locations from the sensor because the raw sensor signal has a rapidly reducing gain slope (change in signal / change in position) with position.  In cases where the noise becomes an issue, a low pass filter such as that shown in the solution in Section 6.7 (Optional Exercise A) may be included in the real-time routine.  There is of course a practical lower bound to the filter cutoff frequency due to the attendant phase lag and hence adverse affect on stability.

This section showed:
1.
That the nonlinear compensation algorithms are effective in inverting the plant nonlinearities so that it behaves similar to a simple double integrator.  (This approximate inversion of the nonlinearities has limitations of course of motion range, accuracy of inversion, and attainable system bandwidth.)

2.
That the linear system linear input/output behavior results in a nonlinear control effort characteristic which dramatically increases drive power as levitation distance increases.

3.
The control effort signal for this and many other control systems is much noisier than the sensor signal due to differentiation (or other high frequency amplification) of the sensor data.



6.4i
Fundamental Properties of Second Order Systems

This section first demonstrates the relationship of kpksys and kdksys to the natural frequency and damping ratio of the closed loop system.  Parameters are selected to implement under-, over-, and critically damped systems and characteristic step responses are plotted.  Integral action is then added and its effect on response, steady-state error, and stability are studied.  

Expected Results
:

1)
In Steps 3 and 4, kd = 0.065 and 0.13 respectively.  The control action of the derivative term has force proportional to and in the opposite direction of the speed of motion, i.e. it is effectively viscous damping.

2)
In Steps 5 and 6, kp = 1.7 and 3.4 respectively.  The control action of the proportional term has force proportional to and in the opposite direction of the displacement, i.e. it is effectively a spring.

3).
In Step 7, the gains for the respective 4 and 8 Hz systems are kp = 0.76, kd = 0.003, and kp = 3.1, kd = 0.03.  The step responses of these systems are shown in Figure 6.4-1i from which the damped natural frequency, d (≈n for low damping) is seen to be near the design values.

4)
In Step 8, gains for the respective under-, critical, and over-damped cases are kp = 1.7, kd = 0.018, 0.091, and 0.18.  Their step responses are shown in Figure 6.4-2i.  The oscillation in the underdamped case and slower rise time with increased damping are clearly seen.

5)
Sine sweeps for the three damping cases are shown in Figure 6.4-3i, which shows the identical data plotted using the Linear time / Linear amplitude, and log() / Db scaling options.  (The overdamped case was limited to 10 Hz due to irregularities associated with differentiated signal noise – see “Note On Running Sine Sweep Tests” below.)  The resonance in the underdamped case and reduced bandwidth with increased damping are obvious.

6)
Figure 6.4-4i shows critically damped case with added integral terms kiksys = 800 N/(m-s) [ki = 8] and kiksys = 1200 N/(m-s) [ki = 12].  The where the characteristic overshoot and zero steady state error are evident.  The PID algorithm was given in the solutions of the last section.

[image: image47.wmf]
a) 4 Hz System
[image: image48.wmf]
b) 8 Hz System

Figure 6.4-1i.  Lightly Damped System Responses Show Damped Natural Frequency
[image: image49.wmf]
a) Underdamped, n = 6.0 Hz, = 0.2
[image: image50.wmf]
b) Critically Damped, n = 6.0 Hz, = 1.0

[image: image51.wmf]
c) Overdamped, n = 6.0 Hz,  = 2.0

Figure 6.4-2i  Typical Results of Step Response Tests Show Classical Second Order Transient Characteristics

Note On Running Sine Sweep Tests.  When running sine sweep trajectories, the output may be seen to drift or be biased at high frequency.  This is normal and is associated with: a) offsets between the nominal position offset, yo, and the gravity offset, uo; b) system noise from differentiation of the position signal (particularly at high damping values); and c) acutator nonlinearities. It is often most apparent in the Db plots because the low amplitudes are graphically amplified due to the logarithmic scaling.  The following should be considered in plotting experimental data.

1.

If a bias is seen, this may usually be eliminated by selecting Remove DC Bias in the Setup Plot window.

2.
If there is wandering or drift in the high frequency data, open the loop, then adjust the value of uo in the real-time algorithm so that Sensor 1 value shown in the background display matches the yo value used in your algorithm. 

3. Bias and wander is essentially eliminated in viewing velocity and acceleration data.  This data of course differs from the position data by  and 2 (+20 and +40 Db/decade).  Plot velocity or acceleration.

4.
For irregularities caused by differentiated signal noise, the problem may be mitigated through increased sample period (as long as stability is not significantly affected) or by reducing the upper frequency of the sweep. 
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a) Underdamped

[image: image54.wmf]
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b) Critically Damped
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[image: image57.wmf]

c) Overdamped

Figure 6.2-2i  Representative Frequency Response Test Data Plotted With Linear Time / Amplitude & Log() / Db Amplitude Scalings

Linear scaling best represents the data as students witness the test.  The low frequency constant amplitude and 1/2 high frequency roll-off are evident.  With log() / Db scaling, the amplitude of the system motion traces out the familiar Bode magnitude characteristics, thereby bridging from test results to theoretical concepts.  Here the underdamped resonance frequency is read directly from the plot
[image: image58.wmf]
a) Critically Damped System With Induced Steady State Error

[image: image59.wmf]b) Critically Damped Plus kiksys =800 N/(m-s)
[image: image60.wmf]c)  Critically Damped Plus kiksys =2000 N/(m-s)

Figure 6.4-4i.  Added Integrator Results in Overshoot & Zero Steady State Error

Answers to Questions
A.
Increased ksys increases both n and  by [image: image61.wmf].  “m" reduces both n and  by [image: image62.wmf].  “kp” increases n by [image: image63.wmf] and decreases  by [image: image64.wmf].   “kd” does not affect n but increases  proportionally.  By replacing k = kpksys and c = kdksys, the transfer function of the plant of Fig. 6.4-1 is identical to Eq. 6.3-2 except that the numerator is equal to 1/m rather than kpksys/m.  Thus the PD controlled rigid body is dynamically the same as the spring/mass/damper except for a scaling constant.  It may be pointed out to students that the system shown in Figure 6.4-5i, where the input is the position of the base of the spring, is in fact dynamically identical to the PD controlled system of Figure 6.3-2b (ki=0).  (If the damper connects between r(t) and the mass rather than between inertial ground and the mass, the system becomes that of the forward path differentiated PD form.)  “kpksys“ has units of N/m and kdksys has units of N/(m/s) which correspond to appropriate unit sets for k and c respectively.
B.
The S-plane diagram of the roots of Eq. 6.2-1 is shown in Fig. 6.4-6i.  The roots are purely imaginary for =0 corresponding to a pure oscillator.  They become complex and lie along the circle s =n becoming more damped as  increases.  For  ≥1 the roots are purely negative real corresponding to an exponential decay with no oscillation.  As  increases beyond 1, the response becomes slow as governed by the smaller magnitude root.  The relative location of the roots in the s-plane is determined by  while their dilation about the origin (time scaling) is determined by n.

C.
The oscillation in the underdamped step response has frequency ≈6 Hz corresponding to the approximate resonance in the frequency response.  The overdamped and critically damped cases have no oscillations nor resonances.  The bandwidth is greatest for the underdamped system and least for the overdamped one.  This corresponds to the fastest and slowest rise times respectively. 

D.
For all damping cases, the amplitude is constant and nominally equal to the input amplitude at low frequency.  At high frequency, the shape is k/m2 in the linear time and amplitude scaling and -40 Db/decade in the Log()/Db scaling.  These properties are shown by taking the steady-state frequency response amplitude found from [image: image65.wmf] (Eq. 6.3-5) and evaluating as  tends to zero and infinity.

E.
Integral action eliminates steady state error to a step input.  The transfer function between the disturbance and the output when the integrator is present is




[image: image66.wmf]
(6.4-1i)


The final value for y is 




[image: image67.wmf]
(6.4-2i)


where u is the step magnitude.  Without the integrator, the final value is




[image: image68.wmf] 
(6.4-3i)


which is reduced according to the size of the proportional gain but never zero.  


The integral term always results in an overshoot (linear, second order system) due to the integration of error during the period before the output initially reaches the step demand amplitude.

[image: image69.wmf]
Figure 6.4-5i.  Dynamically Equivalent System to PD Controlled Rigid Body
[image: image70.wmf]
Figure 6.4-6i.  Loci of Roots of Second Order Characteristic Equation
Optional Exercises & Solutions
A.
What are the phase and gain margins under PD control?  


ans.:  Gain margin is ideally infinite, however as the ratio kp/kd increases to large values, phase margin becomes vanishingly small.  In practical systems, there are time delays and nonlinearities which lead to instability when the ratio kp/kd is large.  There are also discretization issues which affect the stability of all sampled data systems.  For sufficiently large Ts the associated time delay leads to instability.  (Conversely if  Ts is too small, excessive noise is propagated due to numerical differentiation with finite sensor (and numerical processor-internal) quantization.

B.
Discuss via root locus arguments, the stability of the PID controlled rigid body when ki ≠ 0.  In constructing the loci, assume that kp, ki & kd all increase proportionally.


ans.:  The locus of roots where kp, ki & kd all increase proportionally, begins at the triple integrator with one root tending toward -∞ and the other two toward the roots of  [image: image71.wmf].  The angles of departure of the three loci from the triple pole are 60, 180, and 300 deg and therefore  the system is unstable at sufficiently low  gains for all relative ratios of kp, ki & kd.  Via the Routh-Hutwitz criterion, the requirement for closed loop stability is Kskpkd > ki where  Ks is the gain ksys/m.  Thus sufficient increase in relative magnitude of ki leads to instability. 

C.
Determine the sensitivity of the closed loop PD controlled system (assume reverse path kd) to changes in m.  Plot the magnitude of this sensitivity as a function of frequency using the following control gain sets:

kp = 0,
kd = 0 (same as open loop)

kp = 0.1,
kd = 0.022 

kp = 1.0,
kd = 0.070 

kp = 10,
kd = 0.22 


Use the classical definition of the sensitivity of some function T() to the parameter , i.e.




[image: image72.wmf]
(6.4-4i)


How does feedback control effect the sensitivity of the closed loop system to parameter changes?  How does the magnitude of the control gains affect the sensitivity?


ans.:  Applying Eq.(6.4-4i) to Eq.(6.3-2) yields 




[image: image73.wmf]
(6.4-5i)


The magnitude of [image: image74.wmf] is plotted for the specified control gains in Figure 6.4-7i.  The open loop system has a sensitivity of 1 (0 Db) at all frequencies.  The low and medium frequency sensitivity (up to the neighborhood of the closed loop system bandwidth) is reduced by feedback control
.  The sensitivity is increasingly reduced and brought to higher frequencies with increase in control gain.  At frequencies beyond the neighborhood of the closed loop bandwidth, sensitivity is unchanged by feedback control. (i.e. the high frequency closed loop attenuation characteristic is essentially the response of the inertia itself rather than that of the control action: hence the sensitivity to changes in J at these high frequencies is 1.) 

Optional Experiments
A.
Frequency response phase measurements 


The important concept of frequency response phase behavior is easily demonstrated with the experimental system.  By exciting the system at a particular frequency
 and plotting the Commanded Position and Q10 data, the phase is found from the expression 



[image: image75.wmf]
(6.4-6i)


where two and twi are measured from the data according to Figure 6.4-8i.  Typically 5-10 cycles of sinusoidal input is sufficient to establish steady state.  The students should “zoom” in to view a cycle of the data near the end of the maneuver.  Typical test results for the three PD damping cases are shown in Figure 6.4-9i.  These clearly demonstrate the effect of damping ratio on the output phase.
B.
Tracking and frequency response with kd in forward vs. return path

It is instructive for students to compare the response of the system to a dynamic input with the derivative control term in the forward and return paths.  Shown in Figure 6.4-10i is the response of the critically damped system under these two control types to a ramp input.  From the figure it is seen that the derivative in the forward path provides closer tracking but requires higher peak control effort due to the derivative action acting on the reference input.  This difference is slight for the present system, but can be large where inertial force dominates the control effort.  These results may be correlated with experimental frequency responses of the two systems where the forward path kd system is seen to have higher bandwidth and a reduced high frequency attenuation of -20 Db/dec. vs. -40 Db/dec. for the return path case.  


A useful exercise for students is to find the steady state error (ess) of each system to a ramp input.  It is readily shown that

 ess for ramp input with kd in reverse path = Rkd/kp 

ess for ramp input with kd in forward path = 0


where R is the ramp constant.

C.
The results described in Optional Exercise B above regarding instability with increased ki may be shown by slowly and successively increasing its value and implementing the resulting PID controller on the system.  The system will become increasingly oscillatory and then unstable.  Be certain that ki is increased slowly and that the safety instructions of Section 2.3 are followed strictly during this procedure.

[image: image76.wmf]

Figure 6.4-7i.  Effect of Feedback Gain on Sensitivity To Inertia Changes
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Figure 6.4-8i  Phase Measurement Method

[image: image78.wmf]

Figure 6.4-9i.  Typical Phase Measurement Test Results Show Effect of Damping
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a) Return Path
[image: image80.wmf]
b) Forward Path

Figure 6.4-10i.  Tracking Response Using Forward and Return Path Derivative Terms
This section showed:
1.
The distinct actions of proportional and derivative control terms and their equivalence to mechanical springs and viscous dampers.  

2.
The effect of proportional and derivative control terms on the S-plane closed loop roots.

3.
Pole Placement PD control design.

4.
 The effect of integral action and elimination of steady state error. (Static servo stiffness)

5.
The characteristic under- critical, and overdamped PD step responses.

6.
The frequency response magnitude shapes for the various damping cases and the characteristic low and high frequency gain slopes.

7. 
The frequency response phase characteristic of second order systems and the effect of damping ratio. (optional experiment)

8.
The stability characteristics of the second order PD controlled systems and the effect of adding integral action. (optional exercise)

9.
The difference between forward and reverse path derivative control and the effect on tracking performance, frequency response, and required control effort.  (optional experiment)

10.
Correlation between step (transient, time domain) and sine sweep (frequency domain) characteristics

11.
The role of feedback control in reducing sensitivity to parameter changes.  (optional exercise)

6.5i
Disturbance Rejection of Various 1 DOF Controllers

Expected Results:

1.
In Step 1a: kp  = 0.43, kd  = 0.023
2.
In Step 1b:  The integral gain is: ki  = 1000/ksys =10  
3.
In Step 2c:  The filter is in the s-domain : [image: image81.wmf]
The script Disturbbode.m, given in Appendix Ai solves for the discrete coefficients of the filter and provides the numerical transfer functions and Bode plots used in the solutions to Exercises A and B below.  A suitable real-time routine is as follows where the parameter values are set to implement the lead/lag filter and not the integrator.

;Set Ts=0.001768 s

;*********Declare variables**********

#define y1cal q2

#define y1rawo q3

#define kp1 q4

#define kd1 q5

#define kdd1 q6

#define Ts q7

#define y1str q8

#define comp_effort q9

#define pos_last q15

#define u1str q16

#define u1o q17

#define u1 q18

#define laser1 q19

#define y1o q20

#define uterm1 q21

#define uterm2 q22

#define error q23

#define ki1 q24

#define kid1 q25

#define ui1 q26

#define ui1_last q27

#define delta_y1 q28

#define y2cal q30

#define y2rawo q31

#define kp2 q32

#define kd2 q33

#define kdd2 q34

#define y2str q35

#define pos_last2 q36

#define u2str q37

#define u2o q38

#define u2 q39

#define laser2 q40

#define y2o q41

#define u1strstr q42

#define u1strstr_last q43

#define u1str_last q44

#define n0d q435

#define n1d q46

#define d1d q47

;*************Initialize*************

Ts=0.001768 ;for local use only must set Ts in dialog box for sampling period

;Specify Parameters

u1o=18300 ;gravity offset 

y1o=15000

u2o=4800 ;gravity offset 

y2o=-20000

kp1=.43

kd1=0.023 

;ki1=10; Integral term

ki1=0; Use this line to eliminate integrator

n0d=6; Lead/lag coeff's

n1d=-5.984

d1d=-0.984

;n0d=1; Use the these three coeff's to eliminate lead/lag

;n1d=0

;d1d=0

kp2=3.06

kd2=0.061

kdd1=kd1/Ts  ;Discrete time terms, compute here to save real-time computation

kid1=ki1*Ts

kdd2=kd2/Ts

ui1_last=0

;******Begin Real-time Algorithm***** 

begin

y1str=sensor1_pos-y1o

error=cmd1_pos-y1str

delta_y1=y1str-pos_last

ui1=kid1*error+ui1_last

u1strstr=kp1*error-kdd1*delta_y1+ui1 ;CONTROL LAW sans lead/lag

u1str=n0d*u1strstr+n1d*u1strstr_last-d1d*u1str_last;  Lead/lag

u1strstr_last=u1strstr

u1str_last=u1str

pos_last=y1str 

ui1_last=ui1

u1=u1str+u1o ;Add gravity offset

uterm1=6.2+sensor1_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort=0.000165*uterm2*uterm2*u1

control_effort1=comp_effort

q10=y1str

;Simple PD Control of Upper Magnet to Provide Disturbance

y2str=sensor2_pos-y2o

u2str=kp2*(2*cmd2_pos-y2str)-kdd2*(y2str-pos_last2) ;CONTROL LAW

pos_last2=y2str 

u2=u2str+u2o ;Add gravity offset

uterm1=-6.2+sensor2_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort=0.000165*uterm2*uterm2*u2

control_effort2=-comp_effort;Polarity reversed due to magnet N/S orientation

q12=y2str

end

4.
The plots of the disturbance magnet motion and regulated magnet response are shown in Figure 6.5-1i.  From the plots, it is seen that the PD controller had similar response amplitude at both low and high frequency.  The PID system, was effective the at attenuating low frequency disturbances, but actually had an amplified response at the higher frequency.  The PD+lead/lag controller had similar response as the PD system at low frequency, but was effective at attenuating the high frequency disturbance.


Low Frequency Disturbance (0.1 Hz)
High Frequency Disturbance (3 Hz)
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[image: image84.wmf]


Moderately high disturbance transmission
Slightly greater attenuation than low freq. 
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a) Effective disturbance attenuation 
Disturbance amplification
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c) Similar to basic PD controller
Effective disturbance attenuation

Figure 6.5-1i  Experimental Results Show Frequency Dependence of Disturbance Attenuation For Three Controllers

Answers to Exercises
A.
The open loop transfer functions for Controllers “a” and “b” are:



[image: image91.wmf]
(6.5-1i)



[image: image92.wmf]
(Controller "a")



[image: image93.wmf]
(Controller "b")

For Controller “c”, the expression is:



[image: image94.wmf]
(6.5-2i)



[image: image95.wmf]
where Nf(s) and Df (s) are the numerator and denominator respectively in F(s).

For the closed loop expressions, y1(s)/Fd(s):

Controllers "a" & "b":
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(6.5-3i)



[image: image97.wmf]
(Controller "a")
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(Controller "b")


Controller "c":



[image: image99.wmf]
(6.5-4i)
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B.
The Bode magnitude of the above transfer functions is given in Figure 6.5-2i.  The correlation between the closed loop gain and the experimentally obtained disturbance attenuation at the two test frequencies is clear.  The integrator in controller "b" provides large low frequency attenuation but has a high gain peak between three and four Hz making it ineffective at these frequencies.  The lead-lag filter made no improvement over the PD controller at very low frequencies but was effective in the higher frequencies as predicted in the closed loop Bode response.

The correlation between the open and closed loop gains is also clear.  The integrator is manifested as the -60 Db/dec. low frequency slope and provides complete static disturbance attenuation (zero DC gain) in the closed loop.  The low open loop gain slope near crossover correlates with the closed loop resonance near three Hz.  The added gain from the lead-lag filter for frequencies beyond 0.1 Hz yields higher frequency attenuation in the closed loop. 
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a) Open Loop
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b) Closed Loop

Figure 6.5-2i  Transfer Functions of Disturbance to Output Give Underlying Basis For Experimental Results

This section showed:
1.
An integrator in the controller can be an effective way to attenuate disturbances at low frequencies due to the attendant infinite DC gain.  It can however be deleterious for higher frequency disturbance attenuation.

2.
Providing high open loop gain in the expected disturbance frequency band of interest is an effective attenuation approach (subject of course to the requirement for closed loop stability).

3.
Disturbance attenuation properties may generally be predicted from the open loop frequency response.  (The open loop frequency response also indicates other important properties such as bandwidth, stability, sensitivity to parameter changes and static stiffness.)

4.
That the effectiveness of a particular control design depends on the control objective.  For example a controller may be very effective at attenuating low frequency disturbances but ineffective (even deleterious) for attenuating high frequency ones.

6.6i
Collocated Control of SIMO Plant
This experiment illustrates the affect of dynamic coupling on the plant, characteristic differences between collocated and noncollocated dynamics, and the inherent controllability difficulties in the use of a collocated scheme when point of objective control is not at the sensor/actuator collocation.
Expected Results:

1)
In Step 2, a suitable algorithm is as follows:

;Set Ts=0.001768 s


;*********Declare variables**********

#define y1cal q2

#define y1rawo q3

#define kp1 q4

#define kd1 q5

#define kdd1 q6

#define Ts q7

#define y1str q8

#define comp_effort q9

#define pos_last q15

#define u1str q16

#define u1o q17

#define u1 q18

#define laser1 q19

#define y1o q20

#define uterm1 q21

#define uterm2 q22

#define y2o q23

#define y1_delta q25

;*********Initialize*************

Ts=0.001768 ;for local use only must set Ts in dialog box for sampling period

;Specify Parameters

u1o=11800*2 ;gravity feedforward 

y1o=10000

y2o=-43000

kp1=3

kd1=0.1

kdd1=kd1/Ts 

pos_last=0

cmd1_pos_last=0

;******Begin Real-time Algorithm***** 

begin

y1cal=sensor1_pos

y1str=y1cal-y1o

y1_delta=y1str-pos_last

;CONTROL LAW

u1str=kp1*(cmd1_pos-y1str)-kdd1*(y1_delta);

u1=u1str+u1o ;Add gravity offset

uterm1=6.2+y1cal/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort=0.000165*uterm2*uterm2*u1

control_effort1=comp_effort

;INCREMENT VALUES

pos_last=y1str

q10=y1str

q11=control_effort1

q12=sensor2_pos-y2o

control_effort2=cmd2_pos

end
2)
Step responses at y1 and y 2 in Step 3 are shown in Figure 6.4-1ia where kp = 3.0, kd  = 0.1 were selected.  

3)
In Step 4, the predominant feature in y2 is the damped oscillation @ roughly 2.5 Hz.  The relatively high PD gains have brought the closed loop poles near the collocated zeros (roots of N1(s)); thus the oscillations are largely attenuated in y1.  Note this response will vary widely from apparatus-to apparatus due to the sensitivity of the response to friction.  If friction is so high that very little overshoot is obtained, clean the glass rod (and possibly magnet bushing surfaces) according to the instructions of Section 2.2.  

The disturbance affects the upper magnet considerably more [roughly 8x] than the lower one. (If a bilateral disturbance is used, the amplitude should be decreased to avoid attracting the upper magnet out completely up to the mechanical stop (approx. 4 cm.).  This difference in displacement results from the nonlinearity in the magnet-to-magnet and magnet-to-coil forces.  Such a disturbance test may be run if it is desired to reinforce earlier experiments showing the nonlinear nature of the magnetics.).  Typical disturbance plots are shown in Figure 6.6-2i.  

There is some significant steady state error due to the interaction of the lower drive coil field and the upper magnet (i.e., the term Fu12 in Section 5.1).  While this force is relatively small as compared to the upper coil control forces it has a significant effect under the present scheme because the upper magnet is supported only by the relatively soft “spring” k12’.

3)
The step response at y 2 in Step 5 are shown in Figure 6.6-1ib where kp = 1, kd = 0.05 were selected.  Here the overshoot in y2 are less severe than in the high gain case, but the response is slower.  Both magnets have less static stiffness, and hence greater steady state error, than those of the higher gain controller of Step 3. 
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a) High Gain
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Figure 6.6-1i.  Step Responses At y1 and y2 (Steps 3 & 5)
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a) High Gain
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b) Low Gain

Figure 6.6-2i.  Disturbance Responses At y1 and y2 

Answers to Questions
A.
The closed loop poles for the gains above are roughly {-6.5± 5.2i, -.08± 2.7i}(Hz, from Step 3), and { -3.0± 4.3i, -0.3± 2.5i} (Hz, Step 5).  (These results are more lightly damped than the actual system due to the presence of friction.)  The closed loop zeros are identical to the open loop ones with the additional zero at -kp/kd.   The high PD gains in Step 3 have brought the closed loop poles very near the lightly damped collocated zeros.  This pole pair is not canceled in the y2 output.  To reduce the oscillatory response, the proportional gain must be decreased resulting in the more damped poles in Step 5.  The oscillations are also reduced by the slower system response due to the lower frequency real poles.  A view of the root loci of this system for various ratios kd/kp is shown in Figure 6.4-3i.  Notice that the poles remain close to the imaginary axis for high and low values of kd/kp.  These plots are easily generated using the Matlab™ command (kd/kp =0.05 case):



rlocus(conv([.05 1],Num1),Den)
B.
The transfer function is
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(6.6-1i)

The Nyquist plot is shown in Figure 6.6-4i
.  As can be seen in the figure, the phase margin for both systems is roughly 60 degrees.  The gain margin is infinite in both cases.  Because the denominator is unchanged by the choice of output location, the stability margins are identical for y1(s)/r(s).  (It is worth mentioning to the students that in practical systems there are issues such as sensor phase lag and sampling delays that eventually lead to instability at sufficiently high gain.  There are also issues such as drive saturation and noise propagation that limit the practical bandwidth.  
C.
The static servo stiffness of the lower magnet for a disturbance at that location is 




Fd1/y1 = kpksys (N/m)  
(6.6-2i)


For disturbances at the upper magnet, the static servo stiffness at y1 couples in series with the “spring” k12’ and reduces the effective stiffness at y2 according to: 




Fd2/y2 = (kpksys) k12’/(kpksys+ k12’)  
(6.6-3i)


When applied at the second magnet alone, the disturbance force imparts, in the absence of friction, the same steady state force to both magnets, i.e. Fd2≈Fd1.  Because the intermagnet stiffness, k12’, is less than kp, the resulting error at y2 is significantly greater than at y1.  For this same reason, the effect of reduced gain on steady state error at y2 is not great.  At y1 however the effect is proportional to gain and a 3:1 increase in steady state error for the gains given above results from the low gain system.  These effects are readily seen in the disturbance response results of Figure 6.6-2i.  

With integral action, the static servo stiffness is infinite, and the stiffness at y2 in this case is k12’. 
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Figure 6.6-3i.  Root Loci For Various kd/kp
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a) Large Scale
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Figure 6.6-4i.  Nyquist Plots Show Large Phase Margins and Infinite Gain Margins

This Section Showed
1.
High gain control may be effective for flexible systems where the control objective is at the actuator location (y1); but may be largely ineffective for control of the noncollocation (y2) due to flexible plant oscillations.

2.
Plant overshoot and oscillations may be damped via lower gain control, but at the expense of collocated performance and system stiffness.

3.
The static stiffness at the collocation is the same as that of a rigid body.  At the noncollocation, it is equal to the collocated static servo stiffness in series with the structural (“magnetic/gravity spring” in this case) stiffness.

4.
Collocated PD control is ideally stable for all gains but has lightly damped closed loop poles at both low and high gain.

6.7i
Noncollocated SIMO Control: Successive Loop Closure
This approach has the advantage that by closing the high gain collocated loop, system sensitivity to nonideal such effects as sensor and actuator nonlinearities and Coulomb friction at y1(s) is dramatically reduced.  The success of the approach depends greatly on the ability to attain sufficiently high bandwidth at the collocation so that the assumption of unity gain (and zero phase lag) through the ensuing system bandwidth is valid.  Because it utilizes pole placement, success also strongly depends on the accuracy and validity of the pseudo-plant model N2/N1 .  In cases where this model is not well known or involves significant nonlinearity, this approach may be inappropriate.  

This general approach may be successfully employed using other methods of control design for the outer loop (e.g. Bode design, linear quadratic, H∞, -synthesis, or QFT).  The outer loop controller may be either a forward path cascade or return path/prefilter type.  State space controllers are easily expressed in one of these forms.

Notes on Safety and Performance:
1.
The laboratory staff should always be on hand when students implement their controllers.  This is particularly important during the testing of the relatively higher gain designs such as the ones here.  

2.
For a dynamic filter design in general, and pole placement in particular, it is important to maintain relatively high numerical precision.  Students should work in high precision and enter S(s) and R(s) in at least 4 significant digits.  Use of only 3 digits has been shown to yield significantly altered results.

3.
Due to the high associated gains, this approach is robust against model uncertainty and nonlinearities at the collocation.  Because the remaining plant is reasonably well approximated by its linear model between y1 and y2 (Eq. 6.6-1i), the approach here may be employed with success.  In order to get the best possible model of y2(s)/y1(s), the user may wish to identify that portion of the plant directly. y2(s)/y1(s) is found more precisely by letting the lower magnet rest against its hard stop and plotting and measuring the free oscillation frequency (≈ n) and damping ratio (≈  use logarithmic decrement technique) of the upper magnet.  (Students will see the nonlinear spring effect on the oscillation shape).  
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(6.6-1i)

The data may be collected by setting the gains in any of the previous controllers equal to zero and dropping the magnet during the Execute period of any trajectory set to zero amplitude.  Students will see the nonlinear spring effect on the oscillation shape.  

4.
It is possible to create a sufficiently high bandwidth controller that causes a nonlinear response with very large overshoot of the upper magnet in the upward direction.  This is because of the nonlinear nature of the “spring’, k12’, In relatively large positive displacements y2 –y1, the spring become dramatically softer resulting in large overshoot.

Expected Results:

See answers to questions for expected control design values

1)
In Step 3, under the high gain collocated control, the lower magnet is quite stiff (kpksys≈ 300 N/m) while the upper magnet stiffness is essentially that of k12’ (≈ 40 N/m)

2)
A script for generating the inner and outer loop control gains entitled SIMOpoleplace.m is listed in Appendix A.   A suitable algorithm for implementing the desired control is as follows:

;Set Ts=0.001768 s

;*********Declare variables**********

#define y1cal q2

#define y1rawo q3

#define kp1 q4

#define kd1 q5

#define kdd1 q6

#define Ts q7

#define y1str q8

#define comp_effort q9

#define y1str_last q15

#define u1str q16

#define u1o q17

#define u1 q18

#define y1o q20

#define uterm1 q21

#define uterm2 q22

#define error1 q23

#define ref1 q24

#define kid1 q25

#define ui1 q26

#define ref1_last q27

#define delta_y1 q28

#define y2cal q30

#define y2rawo q31

#define y2str q32

#define y2str_last q33

#define y2s q34

#define y2o q36

#define error2 q37

#define s0d q38

#define s1d q39

#define r1d q40

#define kpf q46

;*************Initialize*************

Ts=0.001768 ;for local use only must set Ts in dialog box for sampling period

;Specify Parameters

u1o=11900*2 ;gravity offset 

y1o=10000

y2o=-42500

kp1=3

kd1=0.1

s0d=4.402

s1d=-4.364

r1d=-0.8713

kdd1=kd1/Ts  ;Discrete time terms, compute here to save real-time computation

ref1_last=0

error1=0

y2s=0

kpf=s0d+s1d+1+r1d

;******Begin Real-time Algorithm******

begin

y1str=sensor1_pos-y1o

y2str=sensor2_pos-y2o

;OUTER LOOP

y2s=s0d*y2str+s1d*y2str_last; RETURN PATH: S(z)*y2str-->y2s

error2=kpf*cmd1_pos-y2s; OUTER LOOP ERROR

ref1=error2-r1d*ref1_last; 1/R(z)*OUTER LOOP ERROR --> INNER LOOP REFERENCE INPUT

;INNER LOOP

error1=ref1-y1str

delta_y1=y1str-y1str_last

u1str=kp1*error1-kdd1*delta_y1 ;INNER LOOP CONTROL LAW

;OUTPUT

u1=u1str+u1o ;Add gravity offset

uterm1=6.2+sensor1_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort=0.000165*uterm2*uterm2*u1

control_effort1=comp_effort

control_effort2=cmd2_pos

;INCREMENT VALUES

y2str_last=y2str

ref1_last=ref1

y1str_last=y1str 

q10=y1str

q12=y2str

end

3)
In Step 8, kpf = (r0n10 + s0n20)/n10 where ni0 (i=1,2) is the constant term in Ni.  In this case n20=n10 so that  kpf = (r0 + s0).  For discrete implementation this becomes kpf = (r0d + r1d + s0d+ s1d)

4)
From Step 7, typical step response plots are shown in Figure 6.6-1i.  The y2 rise time is relatively rapid with moderate overshoot. The first magnet moves quickly to accelerate the second one, then reverses motion to minimize overshoot.  The disturbance responses are shown in Figure 6.7-2i.  
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Figure 6.7-1i.  Step Response At y1 and y2 Shows Relatively High System Performance.  Lower Magnet Leads, Then Reverses, To Minimize Error In Upper Magnet.
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Figure 6.7-2i.  Disturbance Response Shows Reduced Error At y2 Compared With Collocated Control.  Polarity Of Response At y1 Reversed Due To Control Regulation
Questions:
A.
Expected values (consistent with others in this manual) are:

kp = 3.0, kd  = 0.086

s0 = 22.692, s1 = 4.6842, r0 = 77.809, r1 = 1

Discrete coefficients using the Tustin transformation are

s0d = 4.402, s1d = -4,364, r0d = 1, r1d = -0.8713

The prefilter gain for these discrete coefficients is

kpf = 0.1687

B.
The reduced and “full” order (design) closed loop transfer functions are:
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(6.7-1i)


[image: image117.wmf]
(6.7-2i)

The simulated frequency responses for the two expressions are given in Figure 6.7-3i.  Both magnitude and phase are similar through the system bandwidth and the assumption of unity gain in C(s) is generally valid.
C.
The reduced and “full” order open loop transfer functions for the outer loop are respectively
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(6.7-3i)




[image: image119.wmf]
(6.7-4i)

The Bode plots of these are shown in Figure 6.7-4i.  The phase margin is approximately 60 degrees in the reduced order case and 25 in the full order one.  The gain margin is approximately 14 Db for the full order case and infinite for the reduced order one.  Thus the stability margin is reduced in the actual system as compared to the idealized low order one.  


Note that both the open and closed loop Bode “full order” responses can ideally be made arbitrarily close to the reduced order one by sufficiently  increasing the inner loop bandwidth.  In practice however, the bandwidth is limited due to signal noise amplification and stability limits from unmodeled effects such as sampling delays and other signal lags.

D. The static stiffnesses are readily found by referring to the static system diagram of Figure 6.7-5i.  At equilibrium and in the absence of static friction, the drive force Fu is equal and opposite to the disturbance force regardless of which inertia (magnet) the disturbance acts on.  We also have that 



for disturbances at the lower magnet: y*2 = y*1
(6.7-5i)



for disturbances at the upper magnet: y*2 = y*1+Fd2/ k12’
(6.6-6i)

where k12’is the “spring” constant.  From these, we have the static stiffness expressions and their values (for the parameters in this manual):
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(= 394 N/m)
(6.6-7i)
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(= -296 N/m)
(6.6-8i)
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(= 44 N/m)
(6.6-9i)

By comparing Eq’s (6.7-7i) and (6.7-9i) it is seen that for this system, the upper magnet is less stiff than the lower one for all kp>0.  Eq. (6.7-6i) shows that the lower magnet will undergo reverse motion in response to disturbances on the upper one whenever kpksyss0 > r0 k12’.  This occurs whenever the outer loop control gain s0/r0 is high relative to spring k12’ as is the case in the present system (see the reversed displacement in y1under disturbance at the upper magnet in Figure 6.7-2)
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Figure 6.7-3i.  Frequency Response of Reduced and Full Order Closed Loop Transfer Functions are Similar Through System Bandwidth
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Figure 6.7-4i. Full Order Open Loop Transfer Function Reflects Reduced Phase and Gain Margins From Idealized Reduced Order System

[image: image125.wmf]
Figure 6.7-5i.  Static System Block Diagram

Optional Experiments & Results 
A.
LQR Control of Outer Loop

Any number of methodologies may be used to design the outer loop controller.  Shown in Figure 6.7-6i are the step and disturbance responses of such a system where the controller is generated using LQR synthesis.  The script for the synthesis is listed in Appendix A as SIMOLQR.m where the control gains for various values of control effort weight are solved for and the closed loop poles and step responses are plotted.  The states defined for the SISO outer loop are y2 and [image: image126.wmf] and the associated gains used are k1=0.87 and k2=0.053.  


The step response shows a faster rise but with greater overshoot than that of the pole placement design.  As in the previous design, the collocated magnet leads the noncollocated one (the object of objective control) in order to accelerate it, then reverses direction to “automatically” reduce the overshoot.  The disturbance response is reduced compared to the pole placement design due to the higher steady state gain – note the significant reversed motion of the lower magnet due to control regulation.  The response is nonlinear (higher overshoot in the positive direction than the negative) due to the nonlinear spring characteristic, k12’.   The real-time routine that generated these responses is given below and includes a low pass filter at the DAC input to reduce noise resulting from differentiated sensor signals.  This filter is useful for the intended purpose but begins to noticeably affect system stability at cutoff frequencies below 40 Hz.  

;Set Ts=0.001768 s;*********Declare variables**********

#define kp1 q4

#define kd1 q5

#define kdd1 q6

#define Ts q7

#define y1str q8

#define comp_effort q9

#define y1str_last q14

#define u1str q15

#define u1o q16

#define u1 q17

#define y1o q18

#define uterm1 q19

#define uterm2 q20

#define error1 q21

#define ref1 q22

#define ref1_last q23

#define delta_y1 q24

#define y2str q25

#define y2str_last q26

#define delta_y2 q27

#define y2o q28

#define error2 q29

#define k1 q30

#define k2 q31

#define kd2 q32

#define filtpole q33

#define k1filt q34

#define k2filt q35

#define filt_comp_effort q36

#define filt_comp_effort_last q37

#define kpf q38

#define dummy q40

;*************Initialize*************

Ts=0.001768 ;for local use only must specify Ts in dialog box to set sampling period

;Specify Parameters

u1o=11800*2 ;gravity offset 

y1o=10000

y2o=-43000

kp1=3

kd1=0.1

;k1=0.8

;k2=0.053

k1=.6 ;Gain For Modified Design

k2=.07 ;Gain For Modified Design 

filtpole=90 ;Low Pass noise filter pole in Hz

kdd1=kd1/Ts  ;Discrete time terms, compute here to save real-time computation

kd2=k2/Ts

ref1_last=0

error1=0

k1filt=filtpole*6.28*Ts/(1+filtpole*6.28*Ts)

k2filt=1-k1filt

kpf=1+1/k1

;******Begin Real-time Algorithm******

begin

y1str=sensor1_pos-y1o

y2str=sensor2_pos-y2o

;OUTER LOOP

error2=cmd1_pos*kpf-y2str; OUTER LOOP ERROR

delta_y2=y2str-y2str_last

ref1=k1*error2-kd2*delta_y2; RETURN PATH: S(z)*y2str-->y2s

;INNER LOOP

error1=ref1-y1str

delta_y1=y1str-y1str_last

u1str=kp1*error1-kdd1*delta_y1 ;INNER LOOP CONTROL LAW

;OUTPUT

u1=u1str+u1o ;Add gravity offset

uterm1=6.2+sensor1_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort=0.000165*uterm2*uterm2*u1

filt_comp_effort=k1filt*comp_effort+k2filt*filt_comp_effort_last

control_effort1=filt_comp_effort

control_effort2=cmd2_pos

;SET PAST VALUES (for next time)

y2str_last=y2str

ref1_last=ref1

y1str_last=y1str

filt_comp_effort_last=filt_comp_effort

q10=y1str

q11=control_effort1

q12=y2str

end

B.
Empirically Modified Design

The control gains generated from the LQR synthesis are easily changed and the response checked so that generally improved system behavior is obtained through interactive design.  This is rather straightforward in that for the states chosen the LQR gains are simply proportional and derivative terms in the outer loop return path.  Shown in Figure 6.7-7i are the step and disturbance responses of such a design where k1=0.6 and k2=0.07 were chosen to provide a more damped response than the LQR system and with similar rise time. The asymmetry of response (overshoot) is much less pronounced.  The disturbance response has similar amplitude but is also more damped.  
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a) Step Response
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b) Response to Disturbance @ y2

Figure 6.7-6i.  Performance of LQR Outer Loop Design
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Figure 6.7-6i.  Performance of Empirically Modified Outer Loop Design

This section showed:
1.
The concept of successive loop closure for SIMO systems.

2.
High gain inner loop control may be used to desensitize the system to nonlinear and uncertain parameters at the collocation.  The outer loop may then be closed by any of several methodologies.

3.
The technique of pole placement design.

4.
Relatively high performance characteristics relative to the noncollocated output, i.e. relatively rapid step response, and strong disturbance rejection as compared to these characteristics for the same output under collocated control.

6.8i
MIMO Control

Expected Results:

1)
In Steps 2 and 3, the LQR design for the indicated control effort weights and resulting closed loop poles may be obtained via the script MIMOLQR.m  given in the Appendix.  

2)
In Step 4, a suitable routine for the LQR full state feedback control is:

;Set Ts=0.001768 s

;*********Declare variables**********

#define kp1 q2

#define kd1 q3

#define kdd1 q4

#define Ts q5

#define y1str q6

#define comp_effort1 q7

#define y1str_last q8

#define u1str q9

#define u1o q14

#define u1 q15

#define y1o q16

#define uterm1 q17

#define uterm2 q18

#define delta_y1 q22

#define y2str q23

#define y2str_last q24

#define delta_y2 q25

#define y2o q26

#define comp_effort2 q28

#define k11 q29

#define k12 q30

#define k13 q31

#define k14 q32

#define k21 q33

#define k22 q34

#define k23 q35

#define k24 q36

#define k12d q37

#define k14d q38

#define k22d q39

#define k24d q40

#define kpf1 q41

#define kpf2 q42

#define u2str q43

#define u2o q44

#define u2 q45

;*************Initialize*************

Ts=0.001768 ;for local use only must specify Ts in dialog box to set sampling period

;Specify Parameters

u1o=18000 ;gravity/control effort offset 

u2o=5800 ;gravity/control effort offset 

y1o=10000

y2o=-20000

k11=1.7

k12=0.064

k13=0.15

k14=.003

k21=.15

k22=.003

;k13=0

;k14=0

;k21=0

;k22=0

k23=1.7

k24=.064

k12d=k12/Ts  ;Discrete time terms, compute here to save real-time computation

k14d=k14/Ts

k22d=k22/Ts

k24d=k24/Ts

kpf1=k11+k13

kpf2=k21+k23

;******Begin Real-time Algorithm******

begin

y1str=sensor1_pos-y1o

y2str=sensor2_pos-y2o

delta_y1=y1str-y1str_last

delta_y2=y2str-y2str_last

;LQR ALGORITHM

u1str=kpf1*cmd1_pos-k11*y1str-k12d*delta_y1-k13*y2str-k14d*delta_y2

u2str=kpf2*cmd2_pos-k21*y1str-k22d*delta_y1-k23*y2str-k24d*delta_y2

;OUTPUT

u1=u1str+u1o ;Add gravity offset

uterm1=6.2+sensor1_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort1=0.000165*uterm2*uterm2*u1

control_effort1=comp_effort1

;Again For Output 2

u2=u2str+u2o ;Add gravity offset

uterm1=-6.2+sensor2_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort2=0.000165*uterm2*uterm2*u2

control_effort2=-comp_effort2;reverse polarity for S pole of magnet upward

;SET PAST VALUES (for next time)

y1str_last=y1str

y2str_last=y2str

q10=y1str

q12=y2str

end

2)
In Step 5, a suitable routine for the independent SISO controllers is the same as that used in Section 6.5 for the disturbance study where the lower is controller setup for basic PD (only) control and the gains set to approximately kp=1.7, kd=0.6 for both the upper and lower systems.  Alternatively and perhaps more efficiently, the above LQR algorithm may be used with the gains k11 and k23 set equal to 1.7, k12 and k24 equal to 0.6 and the remaining gains to zero.  

3)
In Step 6, a plot of the multivariable step maneuver is on the dual SISO controllers is shown in Figure 6.8-1i.  The cross coupling in the outputs is apparent.

4)
In Step 7 the step series maneuver for the multivariable LQR plant is shown in Figure 6.8-2i.  The cross coupling in the responses is significantly reduced form the dual SIOS controlled case.  Shown in Figure 6.8-3i are the upper and lower magnet responses where Trajectory 1 is set up for a unidirectional Impulse of 15000 count amplitude, 250 ms pulse width, 14 repetitions, and 750 ms dwell time.  Trajectory 2 is setup for a bidirectional Ramp of 15000 count amplitude, 15000 counts/s velocity, 1000 ms dwell time and 2 repetitions.  The maneuver is executed with a 500 ms delay of Trajectory 1 after Trajectory 2.  The system motion is visually stimulating to watch and shows relatively rapid response with only moderate cross coupling.

[image: image133.wmf]

Figure 6.8-1i.  Typical Response of Dual SISO Control System To Step Type Trajectories At Each Input 

[image: image134.wmf]

Figure 6.8-2i.  Typical Response of Multivariable LQR Controlled System

[image: image135.wmf]

Figure 6.8-3i.  LQR Controlled System Response to Ramp & Impulsive Inputs 

Answers to Questions / Exercises
A.
Using the numerical plant of Eq. (6.1-21i) the poles of the closed loop transfer function for the specified values of r are plotted in Figure 6.8-4i. A suitable controller from these which meets the closed loop pole specification is the case of r = 0.3 which has a corresponding controller:



[image: image136.wmf]
(6.7-1i)


(That the PD gains in item 2 above turned out very similar to those of the LQR controlled system is not coincidental.  The closed loop roots of LQR controlled systems as the control effort becomes small approach the angles –135 deg. and –225 deg. from positive real axis.  The SOSI design also put the poles at these angles from the origin (=0.707) and in both cases the closed loop roots were designed to be at roughly 6 Hz.)
B.
The dual SISO control shows maximum cross coupling when the two magnets are closest together.  This is because of the nonlinear nature of the “spring” k12’.  Which has greater intermagnet force at small separation and low force at large separation.  The multivariable controlled system shows much reduced cross coupling but does show some residual coupling with the nonlinear nature of k12’being apparent (i.e. the output error is greatest when the magnets are closest, there is a slight over-correction by the controller when the magnets are most widely separated.  This characteristic may vary somewhat from system to system.)

[image: image137.wmf]

Figure 6.8-4i.  Closed Loop LQR Pole Locations For Various Control Effort Weights
Optional Exercises & Solutions
A.
Measure the singular value response of the system and compare it with the simulated response.


Ans.: The singular value response for the r1 input as measured at y1 is found by executing a Sine Sweep via Trajectory 1.  Figure 6.8-5ia shows such a response with the trajectory set to 10000 count amplitude and frequency ranging from 0.1to 30 Hz (30 sec sweep duration).  The 6 Hz rolloff and –40 Db/dec asymptotic slope is clearly seen.  Figure 6.8-5b shows the response where the control gain, k12, is reduced to 0.034.  The effect was to more lightly dampen a closed loop pole pair resulting in the resonance seen at 6-7 Hz.   (The offset y1o was increased to 15000 counts so that the magnet would not strike the mechanical stop during resonance.)  The simulated singular value response (generated in MIMOLQR.m) is shown in Figure 6.8-6i and agrees with the experimental plot. 

B.
Construct a real-time control algorithm in which the nonlinear “spring” k12’ is compensated for as shown in Figure 6.8-7i.  Compare the system response with the others of this section.  


Ans.: An algorithm that implements Figure 6.8-7i is given below.  The step series and impulse/ramp responses are shown in Figures 6.8-8i  & -9i respectively.  The responses show an improvement in the cross coupling relative to the other controllers of this section.  Some cross-coupling effects remain due to inexact cancellation of k12’.  These are likely more the result of sensor errors (the sensor signals drive the nonlinearity inversion routine) than in the differences between the physical and modeled spring and actuator nonlinearities.  Note that this implementation effectively decouples the upper and lower system so that the control design may be approached for each SISO system independently.  The cross coupling errors may be further reduced by increased gain or loop shaping to address the frequency band of interest.
;Set Ts=0.001768 s

;*********Declare variables**********

#define kp1 q2

#define kd1 q3

#define kdd1 q4

#define Ts q5

#define y1str q6

#define comp_effort1 q7

#define y1str_last q8

#define u1str q9

#define u1o q14

#define u1 q15

#define y1o q16

#define uterm1 q17

#define uterm2 q18

#define delta_y1 q22

#define y2str q23

#define y2str_last q24

#define delta_y2 q25

#define y2o q26

#define comp_effort2 q28

#define k11 q29

#define k12 q30

#define k23 q35

#define k24 q36

#define k12d q37

#define k14d q38

#define k22d q39

#define k24d q40

#define kpf1 q48

#define kpf2 q49

#define u2str q50

#define u2o q51

#define u2 q52

#define W q53

#define c q54

#define d q55

#define y12 q56

#define u12term q57

#define u12 q58

#define u1c q59

#define u2c q60

;*************Initialize*************

Ts=0.001768 ;for local use only must specify Ts in dialog box to set sampling period

;Specify Parameters

u1c=0 ;Control effort offset (fine adjustment for initial offset)

u2c=0 ;Control effort offset (fine adjustment for initial offset)

y1o=10000

y2o=-20000

k11=1.7

k12=0.064

k23=1.7

k24=.064

k12d=k12/Ts  ;Discrete time terms, compute here to save real-time computation

k24d=k24/Ts

W=11900; weight of magnet (N*10000)

c=26900; Nonlin magnet coefficient

d=42000; Nonlin magnet offset (cm*10000)

kpf1=k11

kpf2=k23

;******Begin Real-time Algorithm

begin

y1str=sensor1_pos-y1o

y2str=sensor2_pos-y2o

delta_y1=y1str-y1str_last

delta_y2=y2str-y2str_last

;CONTROLLER

u1str=kpf1*cmd1_pos-k11*y1str-k12d*delta_y1

u2str=kpf2*cmd2_pos-k23*y2str-k24d*delta_y2

;NONLIN SPRING INVERSION PLUS MAG WEIGHT OFFSET

y12=133000-sensor1_pos+sensor2_pos; Magnet separation scaled to 1 cm=10000 counts

u12term=(y12+d)*(y12+d)/1000000 ;Intermediate term for u12 divide by 10^6 makes u12 units N/10000 counts

u12=c/(u12term*u12term)*100000000

u1o=W+u12+u1c

u2o=W-u12+u2c

;OUTPUT

u1=u1str+u1o ;Add gravity offset

uterm1=6.2+sensor1_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort1=0.000165*uterm2*uterm2*u1

control_effort1=comp_effort1

;Again For Output 2

u2=u2str+u2o ;Add gravity offset

uterm1=-6.2+sensor2_pos/10000 ;nonlinear actuator compensation in three steps

uterm2=uterm1*uterm1

comp_effort2=0.000165*uterm2*uterm2*u2

control_effort2=-comp_effort2;reverse polarity for S pole of magnet upward

;SET PAST VALUES (for next time)

y1str_last=y1str

y2str_last=y2str

q10=y1str

q11=control_effort1

q12=y2str

q13=control_effort2

end
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a) Original LQR Controlled System
[image: image140.wmf]
b) LQR System With k12=0.034

Figure 6.8-5i.  Experimental Singular Value Plot

[image: image141.wmf]

Figure 6.8-6i.  Simulated Singular Value Response Of Original LQR System

[image: image142.wmf]
Figure 6.8-7i.  Inversion Of Intermagnet Force Nonlinearity
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Figure 6.8-8i.  Step Series Response Of Intermagnet Force Compensated System

[image: image144.wmf]

Figure 6.8-9i.  Ramp/Impulse Response Of Intermagnet Force Compensated System

This section showed:
1.
Implementation of multivariable control on 2-input, 2 output plant

2.
Multivariable LQR design synthesis and control implementation.

3.
Benefits of multivariable control v. SISO control of systems with significant cross coupling

4.
Singular value response of multi-variable system

5
Decoupling of the system through real-time inversion of the nonlinear coupling term.

6.9i
Suggestions For Further Experiments

6.9.1
Induced Field Levitation

The fascinating phenomenon of levitation through an induced repulsive field in a moving conductor is readily demonstrated using the optional turntable accessory.  Here the magnet’s levitation height is controlled through regulation of the turntable speed.  The upper laser sensor of the basic apparatus is used to measure magnet height and the drive coil is used to apply disturbances to the system when configured in SISO.  Additionally the system is readily configured for MIMO where the wheel speed and magnet height are outputs and coil current and wheel torque are inputs.  This accessory may also be used to demonstrate control of second order rigid body systems and fundamental servo based motion control.

6.9.2
Practical Control Issues

Many important practical control implementation issues are readily studied using the Model 730 system including the following.

a. Drive Saturation.

The output will saturate for control effort values greater than 10 V. (32768 counts).  The effect can lead to qualitative changes in the shape of the system response and to limit cycle instability in the extreme.  This can be demonstrated on the SISO system with the initial offset increased (to say 3 cm) and rapid maneuvers such as an “impulse” of 250 ms followed by a dwell of 750 ms.  For small amplitude, the system responds nominally; as amplitude increases, the response becomes highly irregular.  These tests should be run for only a brief duration to avoid overheating of the amplifier and drive coils.

b. Effect of Discrete Time Sampling.

The time delay associated with discrete time sampling leads to instability as the sample period becomes excessively long.  For the Model 730 system and the controllers studied here, these effects become apparent for sample periods greater than several miliseconds and can lead to instability for periods on the order of 10 ms or less.  This is readily demonstrated by performing closed loop step responses and incrementally increasing sample period.

c. Effect of Finite Wordlength and Sensor Quantization.

Finite wordlength effects are a potential issue in all sampled digitally controlled systems.  The effects may be demonstrated by truncating the precision of the S and R terms in the pole placement controller of Section 6.7.  As the numerical precision is decreased the system response departs for the nominal and can become unstable.  Truncation of the derived rate signal can also be a significant issue.  As sample period becomes short, the sensor signal associated with derived rate (e.g. via backwards difference) loses resolution creating noise in the output.  This source of noise increases with reduced sample rate 

d. Effect of Sensor Noise

Sensor noise is amplified in the differentiation of the signal to estimate rate.  As the rate feedback gain becomes large relative to the sample rate, noise is generated and seen in the output (and heard audibly).  This may be demonstrated by increasing the derivative gain.  It may be mitigated by using a low pass filter in the forward control path such as the one in the SIMO LQR controller given in Section 6.7i.  This may be a higher order filter for more effective attenuation, however there is attendant phase loss and system stability is adversely affected as the filter cutoff frequency is reduced (typically 30-40 Hz is the lower practical limit).  As stated above, sensor noise may also propagate due to truncation of the derived rate obtained by discrete sampling.

6.9.3.  Discrete Control Design.

The designs in this Manual are based on continuous time modeling and implementation using backwards difference or bilinear transformations to transform the control laws to discrete time.  In some cases more effective control designs (improved performance/stability characteristics) may be obtained through the use of discrete design techniques.

6.9.4  System Stability

Stability margin metrics such as gain and phase margins were addresses in some of the above sections, but not in a comprehensive fashion.  The experimental gain margins are easily measured by simply increasing gain until incipient instability is exhibited (typically oscillations in the output increasing in magnitude with gain).  Phase margin may be shown by increasing sample period.  The effect may be approximated as being that of a pure time delay so that phase loss, , at the crossover frequency, c, as a function of sample period Ts, is found as. [image: image145.wmf] , where s is evaluated at c.

6.9.5  Sensitivity & Robustness to Parameter Changes
The sensitivity of the system to parameter changes is a fundamental and important concept.  This may be studied analytically as in the exercises in Section 6.4i.  Experimentally, the inertia may be increased and the changes in the system response measured. (e.g. use a modeling clay type material that may be later removed without leaving permanent residue on the white diffuse reflective magnet surface.  The user is responsible to assure that whatever material is used it does not permanently damage the surface.  Ferromagnetic materials will alter the magnetic field and should not be used.  Distribute the added mass such that the c.g. remains in the center of the magnet and do not block the laser light path for the active sensor.) The experimental responses can be compared with that of the nominal plant and the indications of the sensitivity analysis predictions.  An experimental frequency response is particularly useful in this comparison. 

6.9.6  Reversed Upper Magnet, More Strongly Unstable Plant

The upper magnet polarity may be reversed such the intermagnet force is negative.  This increases the modulus of the open loop real pole pair in the uncompensated plant (i.e. no actuator nonlinearity compensation) and hence drives the right half plane pole toward “faster” instability.
  The numerical model for this plant is generated by reversing the sign of the intermagnet “spring constant”, “k12prm“ in the script MIMO.m.  The resulting plant requires higher closed loop gain to stabilize than the one with repulsive intermagnet force.  Conversely, any such stabilizing controller should have relatively high bandwidth.  The user should be extremely careful in setting up and operating such a configuration to prevent collision of the magnets due to the strong attractive intermagnet force. 

6.9.7  Advanced Control

Virtually any control methodology may be implemented on the Model 730 system including linear (e.g. observer based, LQG/LTR, H∞, QFT) and nonlinear (e.g. adaptive, fuzzy logic, variable structure) forms.  Feedforward elements may be added to study improved tracking performance.   Customized inputs can be implemented for the study of optimal trajectory synthesis (e.g. least peak power, most rapid settling) using the User-defined trajectory option.

Appendix Ai. Useful Scripts and Algorithms

A.1i
Matlab® Scripts

Listed in the table below are scripts that are used in the instructor’s edition of the manual and others.  These are shown in the approximate order that they appear in the manual and are included on diskette with the Model 730 system when shipped.  These are not represented as being numerically or methodologically optimal, but some should be useful to most users.

Script Name
Description

Sensorcal.m
Solves for coefficients of sensor linearization/calibration function.  User inputs raw sensor data and magnet position.

Actuatorcal.m
Solves for coefficients of actuator linearization/calibration function.  User inputs raw control effort (counts) and levitated magnet height.

Magnet2magnetcal.m
Solves for coefficients of nonlinear intermagnet force function.  User inputs force and magnet separation distance.

SISOplant.m
Solves for the linearized or “linear” (via nonlinear compensation algorithms) SISO plant models for the upper and lower magnet positions.  User must first run Sensorcal.m, Actuatorcal.m, and Magnet2magnetcal.m, and for the linearized forms, the raw sensor ourputs at the nominal operating position.

MIMOplant.m
Solves for the linearized or “linear” (via nonlinear compensation algorithms) MIMO plant models.  User must first run Sensorcal.m, Actuatorcal.m, and Magnet2magnetcal.m, and for the linearized forms, the raw sensor outputs at the nominal operating position.

PDdesigner.m
Simple script solves for the proportional and derivative gains of a second order PD controlled system.  User inputs n and .

Secondorderresponse
Simple script plots the step and Bode responses of a second order system.  User inputs n and .

DisturbBode.m
Generates the open and closed loop Bode plots for the output /disturbance transfer function of a second order system with lead/lag and integral compensation.  It also generates the discrete time coefficients of the lead/lag filter.  User must first run SISOplant.m, and input the lead/lag zero and pole frequencies. 

SIMOpoleplace.m
Solves the diophantine equation for the pole placement controller numerator and denominator used in the successive loop SIMO design of Section 6.7   It also calculates the inner loop PD gains and generates the closed loop step response of the idealized system.  The user inputs the desired inner loop natural frequency and damping and the desired outer loop poles.  User must first run SISOplant.m

SIMOLQR.m
Solves the linear quadratic control gain optimization for the outer loop SIMO design of Section 6.7.  It also calculates the inner loop PD gains and generates the closed loop poles and step response of the idealized system.  The user inputs the desired inner loop natural frequency and control effort weights.  User must first run SISOplant.m

MIMOLQR.m
Solves the linear quadratic control gain optimization for control of the MIMO system of Section 6.8.   It also calculates the closed loop poles and plots the step response for one input of the idealized system.  The user inputs the desired inner loop natural frequency and control effort weights.  User must first run MIMOplant.m

A.2i
Real-time Routines

Listed in the table below are real-time routines that implement the controllers and other functions described in the instructor’s section of this manual.  These are shown in the approximate order that they appear in the manual and are included on diskette with the Model 730 system when shipped.  There may be slight differences between the version shown in the manual and those on the diskette.  The furnished diskette contains the latest version of these routines and should be used for actual implementation.  Also, the algorithms have parameters consistent with a particular apparatus.  For more representative performance/stability results, the user should run the appropriate scripts to generate the numerical plant models and control designs for a particular apparatus and adjust the real-time control parameters accordingly.

Routine Name
Description

Sensor Comp.alg
Implements the sensor nonlinear compensation / calibration routine used in Section 6.1 for demonstration purposes.  (For most purposes the compensation is effected through the Setup Sensor Calibration dialog box.)

Actuator Comp.alg
Implements the actuator nonlinear compensation / calibration routine used in Section 6.1.  Allows the user to input the magnet weight to render the magnet “weightless” in demonstration and for control design purposes.  This compensation is used within all “compensated” routines that follow.

PDuncomp1.alg
Implements PD control on the fully nonlinear lower magnet (repulsive) plant without sensor or actuator calibration.

PDuncomp2.alg
Implements PD control on the fully nonlinear upper magnet (attractive) plant without sensor or actuator calibration.

SISO Comp Lower.alg
Implements PD and PID control on the lower (repulsive) SISO plant using sensor and actuator nonlinearity compensation.

SISO Comp Upper.alg
Implements PD control on the upper (attractive) SISO plant using sensor and actuator nonlinearity compensation.

SISO Disturbance.alg
Controls the position of the  upper magnet to provide a commandable disturbance to the lower magnet.  Implements controllers at the bottom magnet of the following forms (user-selectable) PD, PD+ Integrator, or PD+ lead/lag.  The objective is to measure the disturbance rejection properties of the various lower magnet systems.

SIMO Collocated.alg
Performs collocated control of the two magnet system with control effort input and sensor feedback at the lower magnet but control objective to regulate the position of the upper magnet.

SIMO Poleplace.alg
Performs successive loop noncollocated control of the two magnet system with control effort input at the lower magnet and outer loop feedback at the upper magnet.  The inner loop is high bandwidth PD and the outer one is a pole placement design.

SIMO LQR.alg
Performs successive loop noncollocated control of the two magnet system with control effort input at the lower magnet and outer loop feedback at the upper magnet.  The inner loop is high bandwidth PD and the outer one is a LQR design.

MIMO LQR.alg
Performs full state feedback LQR based control of the two input, two output plant.  User may characterize performance across any of the input/output vectors.

MIMO k12 Comp.alg
Compensates for the nonlinear intermagnet force coupling to implement independent upper and lower magnet controllers.

� Here the “nonlinear compensation” refers to a non-dynamic (position dependent only) inversion of the nonlinear characteristic.

� For plants where the raw sensor output is used, the equilibrium positions in raw sensor counts must be determined from these results- generally they may be found by inspection of the plots generated in Sensorcal.m

� These may vary according to a particular system’s ksys.

� The gains given will be identical for systems scaled to ksys = 100 N/m.

� It may be useful to point out to students the concept of static servo stiffness which is the inverse of the final value of the unit step response of  Eq. (6.4-1i).  Here, the static servo stiffness is infinite with the integral control term and is kpksys without that term. 

� These values correspond to incremental increases in n by � with constant damping ratio (=1.0) for the parameters used in this manual).  The student should be able to show this. 

� It may be brought to students attention that the system bandwidth is typically the “useful” frequency range for practical systems.  I.e. it is in this frequency band that sensitivity reduction is usually most important.

� The phase measurements may also be made from the frequency response (sine sweep) data but generally yields less accurate results due to the transient behavior associated with the changing input frequency.

� See also Eq. (6.2-4i)

� The “loops” in the figure are associated with the resonant poles and zeros for the system modeled as having no friction.

� The uncompensated MIMO plant with repulsive intermagnet force can be in fact be open loop stable if the upper magnet “spring constant”, k2’, (typically negative) is small in magnetude relative to the positive intermagnet k12’.  This occurs at approximately y2  = -2.8 cm. 
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